THz-wave Electrometry Based on Lighshift Measurements with Cold Trapped HD⁺ Ions Florin Lucian Constantin Laboratoire PhLAM, CNRS UMR 8523 59655 Villeneuve d'Ascq, France

• Atom-based measurements : stability, reproducibility, SI-traceability

 \Rightarrow Weak microwave electric field detection at the μ V/cm level; sensitivity limited by the photon shot noise Nat. Phys. 8, 819 (2012); IEEE Trans. Antenna Propag. 62, 6169 (2014); Opt. Express 25, 8625 (2017)

• Comparison theory-spectroscopy with hydrogen molecular ions Phys. Rev. Lett. 118, 233001 (2017); Phys. Rev. Lett. 97, 243001 (2006); J. Phys. B 44, 025003 (2011); Phys. Rev. A 89, 052521 (2014); Nature 581, 152 (2020); Science 369, 1238 (2020)

- Proposal to exploit systematic frequency shifts in two-photon rovibrational spectroscopy of cold trapped HD⁺ ions
- Characterization of a magnetic field

-Zeeman spectroscopy on $(v,L)=(0,0)\rightarrow(2,2)$

• Characterization of a THz electric field

-probing lighthifts on $(v,L)=(0,0)\rightarrow(2,0)$

Theoretical calculations of HD⁺ energy levels in external fields

- Rovibrational energies : 10⁻¹² precision
- Hyperfine splittings : 0.5 kHz accuracy
- Zeeman shifts of HD⁺ energy levels : 10⁻⁴-level precision for the Zeeman shift parameters
- Lighshifts of HD⁺ energy levels : *standard dynamic polarizabilities of HD*⁺

Two-photon spectroscopy of cold trapped HD⁺

Accuracy and resolution

IEEE Trans. Instrum. Meas. 68, 2151 (2019)

• rate equation model for REMPD Transition rates : $\Gamma_{2ph,v}=10 \text{ s}^{-1}$; $\Gamma_{diss}=200 \text{ s}^{-1}$ REMPD time : 10 s

Allan variance at molecular ion QPN limit
⇒ 2-Hz uncertainty estimate in single-ion spectroscopy

Characterization of a magnetic field

• probing a sensitive two-photon transition

 $(0,0,1,2,2,-2) \rightarrow (2,2,1,2,4,0)$

 $\Delta f_{Z} = \eta_{B}(\{U_{th}\}; J_{z}, J'_{z})B + \eta_{B^{2}}(\{U_{th}\}; J_{z}, J'_{z})B^{2}$

evaluation of exp./theor. uncertainties
δf_z=2 Hz; δq=δr=50 MHz/T²; δt=5 kHz/T

 \Rightarrow detection of magnetic fields at the 10⁻¹⁰ T level

 \Rightarrow limit from theory errors in the 10⁻¹⁴-10⁻¹¹ T range

THz-wave characterization by two-photon spectroscopy of HD⁺

Scalar THz electrometry

• probing a two-photon transition lightshift

 $(0,0,1,2,2,2) \rightarrow (2,0,1,2,2,2)$ $\Delta f_{LS} = -\frac{|E_{THz}|^2}{8} (\alpha_{n'}(\{U_{th}\}; B, f_{THz}) - \alpha_{n}(\{U_{th}\}; B, f_{THz}))$

• evaluation of exp./theor. uncertainties frequency measurement, magnetic field calibration and THz-wave frequency, theoretical parameters

Vector THz electrometry

• probing six lightshifts for two orientations and three values of the magnetic field on

 $(0,0,1,2,2,2) \rightarrow (2,0,1,2,2,2)$ $\Delta f_k^{(\alpha_i,\beta_i)} = \sum_q c_{F,q} \cdot \Delta \alpha_{k,q} (\{U_{th}\}; f_{THz}, B_k) | E_{THz,-q} (\alpha_i,\beta_i, E_x, E_y, E_z, \varphi_x, \varphi_y)^2$ • inversion of the nonsingular system

Reference THz-wave electric field ($E_x=E_y=E_z=15.83$ mV/m, $\phi_x=\pi/4$, $\phi_y=\pi/3$), frequency: 1,314,947,502.3 kHz

 \Rightarrow Retrieved THz-wave electric field (E_x=15.88(92) mV/m, E_y=15.74(72) mV/m, E_z=15.831(3) mV/m, ϕ_x =0.78(6) rad, ϕ_y =1.05(1) rad)

F.L. Constantin