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1. Motivation
The dramatic e�ect of long-range interactions on the dynamics of quantum matter has attracted signi�cant experimental and theoretical attention in recent years. In contrast
with short-range interacting lattice models, where the spreading of correlations is limited by the well-known Lieb-Robinson bounds, su�ciently long-range interactions lead to
the instantaneous propagation of information and the breakdown of the notion of causality, consistent with the absence of known Lieb-Robinson bounds. In the intermediate
(quasi-local) regime between these two limits, the existence of some form of causality is strongly debated and remains a crucial outstanding problem.

2. Long-range interactions
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Fig. 1: (a) long-range interaction potentials. Note the regularization of the UV diver-
gence but not the (possible) IR divergence on an in�nite lattice. (b) Fourier transform
of long-range interaction potential. Note the non-analyticity at k = 0 for � < 2.

3. Model and approach
We address the emergence of causality in the quasi-local regime by studying the out-
of-equilibrium dynamics of the one-dimensional transverse Isingmodel with algebraic
long-range exchange coupling,

H =
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R≠R′

J

|R − R′|�
Sx
R
Sx
R′
− 2ℎ

∑

R

Sz
R
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We induce out-of-equilibrium dynamics via two types of quenches.
1st: Global quench, change transverse
�eld strength

2nd: Local quench, spin �ip at center of
ground state (ℎ∕J = 50)

|↑ … ↑⟩
spin �ip
⟶ |↑ … ↑↓↑ … ↑⟩

Furthermore, we employ two approaches,
1. state of the art tensor-network approach via densitymatrix renormalization group
(DMRG) and time-dependent variational principle (TDVP),

2. analytic approach via linear spin wave theory (LSWT) valid for ℎ∕J ≫ 1,
and consider various experimentally accessible quantities, like spin–spin correlation
functions, local magnetization and Rényi entropies.
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Fig. 2 Power law spreading in a t–R–diagram: sub-
ballistic (teal), ballistic (red), and super-ballistic (or-
ange). This power law is the ansatz for describing
several di�erent signal edges in long-range interact-
ing spin models.

5. Conclusion
Our results demonstrate the emergence of a weak form of causality in the quasi-local
regime of long-range spin models, characterized by fundamentally non-universal scal-
ing laws which allows us to reconcile contrasting observations in the existing literature
[1, 2]. We further demonstrate that the scaling of quantum entanglement takes on a
universal form with a well-de�ned entanglement edge which propagates ballistically
for all interaction ranges we consider.

4. Results
We are inspecting the two-point function,
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the local magnetization
(
1∕2 −

⟨
Sz
R
(t)

⟩)
, and the bipartite Rényi entanglement en-

tropies Sn =
1

1−n
log

{
tr[�̂n]

}
, and �t power laws (t ∝ R�) to their signal edges and

local maxima, respectively. We corroborate our numerical results with an analytical
method (LSWT) which explains them in terms of a quasi-particle picture.
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Fig. 3 (a) Gz(R, t) after a global quench
via TDVP simulation. Solid green line
is power law �t to the correlation edge
(CE), dashed blue line is �t to local max-
ima with dynamical exponents �CE and
�m, respectively. (b) In green �CE(�)

from TDVP (points) and LSWT (solid
line, �CE = 3 − �). In blue �m(�) from
TDVP (points) and from LSWT (dashed
line, �m = 1). (c) As above for spreading
velocities over � in the local regime.

Fig. 4 (a) 1∕2 − Sz
R
(t) after a local quench

via TDVP simulation. Solid green line
is �t to the spin edge (SE), dashed blue
line is �t to local maxima with dynam-
ical exponents �SE and �m, respectively.
(b) In green �SE(�) from TDVP (points)
and LSWT (solid line, �SE = 3 − �). In
blue �m(�) from TDVP (points) and from
LSWT (dashed line, �m = � − 1). (c) As
above for spreading velocity over � in the
local regime.

(a)

(b)

(c)

AB

Sn=1(R, t) via TDVP

Fig. 4 (a) von Neumann entanglement entropy (n → 1) via TDVP after a local quench.
Solid green line: power law �t to entanglement edge (EE). (b) Fitted �n=1

EE
over � ob-

tained from TDVP (cyan) and LSWT (magenta) in system size N = 96. Grey dashed
lined is LSWT prediction �EE = 1 (c) Fitted �n=1

EE
over � obtained LSWT (magenta) in

system size N = 512. Grey dashed lined is LSWT prediction �EE = 1.

Surprisingly, the EE always scales ballistically. This can be predicted by means of
LSWT. We �nd �A = trB(�) = �1(t) |0A⟩⟨0A| + �2(t) |�A⟩⟨�A|, whereas �A is a com-
plex superposition of quasi-particles in the �rst excited manifold. Consequently, the
entanglement entropy is bounded from above by log(2) = 0.69. In the asymptotic limit
and for not too small values of R∕t, we �nd �2(R, t) ∝ t

1

2−��
(
3−�

2−�
, R

)
∼ (t∕R)

1

2−�, with �
the Hurwitz zeta function. Hence, the n-order Rényi entropy is a function of the ratio
R∕t, which con�rms ballistic scaling for all Rényi orders.
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