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Introduction
The spontaneous emergence of density ordered states via optomechanical forces is a prominent feature of cold atomic systems driven far from equilibrium [1]. In transverse optical setups with
optical feedback, the collective atomic bunching gives rise to a self-focusing Kerr-like nonlinearity, displaying modulation instabilities that result in self-organized hexagonal stuctures [2]. In this
work, we show instead that the optomechanical self-structuring displays a richer structural transition behaviour, characterized in terms of three crystalline phases, i.e., hexagonal, roll/stripe
and honeycomb (H+,R,H−) [3]. Moreover, the subcriticality of theH+ phase allows the existence of a feedback soliton functioning as a self-sustained dark atomic trap.

The model (Single-Feedback-Mirror)
We consider a thermal cloud of two-level atoms at constant temperature T, where the atomic motion is overdamped by means
of optical molasses beams. In this regime, the medium dynamics is described by the Smoluchowski equation (dipole force +
spatial di�usion) for the atomic density distribution n(r, t). We denote with � the linear susceptibility of the cloud.
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where b0 is the optical density at resonance, ∆ is the light-atom detuning, Γ the decay rate and s(r, t) the saturation intensity. The
self-structured phases above are numerically obtained by solving the feedback loop at �xed b0 = 110 and T = 300�K. (a), (d)H−

phase at ∆ = 25. (b),(e) R phase at ∆ = 55. (c), (f)H+ phase at ∆ = 90.

Hexagon-Roll competition
The atom-�eld system can be formally reduced to a single closed equation for the density perturbation �n(r, t). We expand up to
third order in �n and derive the solvability conditions, leading to the amplitude equations [4]:
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Where ℱ[{Ai}] is the free energy functional. Its dependence on � for the di�erent phases and the corresponding minima are
shown in (a). The intersections in (b) determine the observed phase boundaries in good agreement with numerical simulations.

Note that for � = 1, we have � = 0, and the system recovers the inversion symmetry.

Phase diagram
To characterize the transitions between phases we span the
space (∆, b0) within the experimentally achievable ranges ∆ ∈
[10, 110] and b0 ∈ [50, 150] [2]. We start with a perturbed R
state and iterate the loop long enough to reach stabilization
with the equilibrium density:
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We obtain the following phase diagram at �xed distance from
the instability threshold I0:

We report a stability domain of R states sandwiched between
two disjointH± regions, separated by lines of constant�. Tran-
sitions between phase boundaries are addressed in terms of
a weakly nonlinear espansion based on the real Ginzburg-
Landau amplitude equations.

Dark self-sustained traps
The optomechanical nonlinearity displays a structural phase
transition between hexagonal statesH− → H+ of n(r, t). This
allows the existence of dark, blue-detuned solitons. (See below
for b0 = 50, ∆ = 80, � ≈ 78.3).

where p = I∕I0. Such a soliton con�guration at large detuning
(∆ ≫ 1) enables the realization of a controllable dark, self-
sustained dipole trap for cold and ultracold atoms.

Optomechanical transport induced by OAM
We perform a set of 1D particle dynamics simulations describing the formation and angular (rotational) dynamics of the dark
blue-detuned feedback soliton in the presence of an OAM carrying pump [5]:

Applying a linear phase on the input pump generates angular drift [3]. The initially prepared density peak reaches steady state
motion and non-zero average angular momentum (mass current) of the atoms trapped in the soliton region (highlighted in red).

Future directions
▶ Structural phase transitions in the case of a quantum de-

generate gas?

▶ Role of dissipation in our system.

▶ Connections with the concept of quantum droplet.
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