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Abstract: Single particle-resolved fluorescence imaging is an enabling technology in cold-atom physics. However, so far, this technique has not been available for nanophotonic
atom-light interfaces. Here, we image single atoms that are trapped and optically interfaced using an optical nanofiber. Near-resonant light is scattered off the atoms and imaged
while counteracting heating mechanisms via degenerate Raman cooling. We detect trapped atoms within 150 ms and record image sequences of given atoms. Building on our
technique, we perform two experiments which are conditioned on the number and position of the nanofiber-trapped atoms. We measure the transmission of nanofiber-guided
resonant light and verify its exponential scaling in the few-atom limit, in accordance with Beer-Lambert's law. Moreover, depending on the interatomic distance, we observe
Interference of the fields that two simultaneously trapped atoms emit into the nanofiber. The demonstrated technique enables postselection and possible feedback schemes and
thereby opens the road toward a new generation of experiments in guantum nanophotonics.
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Summary & Outlook
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Beer-Lambert's law in the few atom limit
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Our technique could enable new experiments, including:

®* Collective effects, mediated by the waveguide, e.g.
sub- and superradiance with exactly known number of emitters

®* Reacting on real-time images, addressing of single atoms
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