Dynamics of strong and weak localizations in disordered quantum systems

R. Chicireanu¹

C. Hainaut¹, I. Manaï¹ J.-F. Clément¹, J.C. Garreau¹, P. Szriftgiser¹, G. Lemarié², N. Cherroret³, D. Delande³

¹Laboratoire de Physique des Lasers, Atomes et Molécules (PHLAM) UMR 8523 CNRS et Université de Lille ²Laboratoire de Physique Théorique, IRSAMC, UMR 5152 CNRS; Université Paul Sabatier, Toulouse ³Laboratoire Kastler-Brossel, UPMC, CNRS, ENS, Collège de France, Paris

 $\frac{w}{\pi} >> 1$ Localization $\frac{w}{\pi} << 1$ Diffusive regime Now : controlling the Time Reversal symmetry in disordered (Anderson) systems **Creation of an artificial gauge field in Floquet systems**

Symmetries greatly affect localization dynamics

 $\hat{H}(x,t) = \frac{\hat{p}^2}{2} + K(t)\cos(\hat{x} + a(t))\sum_n \delta(t-n) > Mapping$ (momentum space): Quasi-1D disordered system + Aharonov-Bohm flux $\Phi_{2} = 0$ $\Phi_2 \neq 0$ $\mathcal{K}(t) = K \left[1 + \cos\left(\frac{2\pi t}{N} + \varphi\right) \right] \qquad \text{Artificial gauge flux:} \qquad \Phi_2 = N\varphi$ **Periodic** modulations CFS CFS (phase or amplitude) CBS K(t) = K(t+N) $N\varphi = 0 \pmod{\pi}$: orthogonal class K(t): symmetric a(t): antisymmetric Time Reversal Symmetry (TRS) preserved Orthogonal Unitarv Floquet quasi-energy level statistics Time (kick #) $N\varphi \neq 0 \pmod{\pi}$: unitary class (b)K(t): random ((t) (arb. units) P(s)P(s)Time Reversal Symmetry (TRS) broken PSQKR COE CUE a(t) : random

Observation of the Coherent Forward Scattering : a great tool for studying the AL dynamics

In reciprocal space [3]

 $t \ll t_{loc}$

A potassium BEC apparatus under way

Time (kick #)

CFS: smoking gun of the Anderson localization

1st order corrections absent when TRS g $1/q^{2}$ 2nd order corrections survive when TRS

"Universality" of the scaling function:

FEDER

Hauts-de-France

1.5

2.5

2

Perspectives :

PhD students : C. Cherfan M. Denis

2.5

Université de Lille

Control interactions *via* **Feshbach resonances**

What is the fate of Dynamical localization ? (teaser)

Contact interactions have long been predicted to destroy Dynamical localization

[5] C. Rylands et al., PRL 124, 155302 (2020)

- Short-range in position \Leftrightarrow long range in momentum
- Dynamical localization replaced by sub-diffusive behavior