
 

Nowadays, one of the main goal in ultracold molecular 
physics is to create quantum degenerate gases of dipolar 
molecules such as Bose-Einstein condensates or 
degenerate Fermi gases. Unfortunately, when the 
molecules start to collide, whether they are chemically 
reactive or not, a lot of them are lost in the process 
[1,2,3] in the short range domain. During the last decade, 
some methods have been developed to reduce those 2-
body short-range losses [4,5,6,7]. However, during the 
evaporative cooling, some 3-body collisions can occur.
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a) Physical idea of the shielding

a) Hybrid method 

If we apply a static electric field on a sample of 
molecules prepared in their first rotational excited state, 
we can engineer a long-range potential barrier using the 
dipole-dipole interaction [5,6,7]. Therefore, the 
molecules can’t come close to each others and 
quenching collisions (loss + inelastic) highly drop.

2. Two-body shielding and 
simplifications

[1] X. Ye et al., Science Advances 4 (2018)
[2] S. Ospelkaus et al., Science 327, 853 (2010)
[3] K.-K. Ni et al., Nature  464, 1324 (2010)
[4] L. Lassablière, G. Quéméner, Phys. Rev. Lett. 121, 
163402 (2018)

[5] A. Avdeenkov et al., Phys. Rev. A 73, 022707 (2006) 
[6] G. Wang, G. Quéméner, New. J. Phys. 17, 035015 (2015)
[7] M. L. González-Martinez et al., Phys. Rev. Lett.  96, 032718 (2017)
[8] K. Matsuda et al., arXiv 2009.07461 (2020), accepted to Science
[9] B. Kendrick et al., J. Chem. Phys.. 110, 6673 (1999)

b) Shielding of two-body losses

Very recently, an experimental study at JILA revealed 
the shielding for KRb molecules in a strong electric field 
(E=12.67 kV/cm) [8], in very good agreement with 
previous theoretical predictions [6]. This shielding is also 
predicted to work for many molecules [7].

E~4.8 kV/cm

Dipole-Dipole

We have also demonstrated that we can obtain the 
same results in the vicinity of the shielding E field if :

(i) We work only with the projection of the rotationnal 
quantum number m

j
=0.

(ii) We work only with the two states |1,1> and |2,0> 
where the notations stand for |j

1
 , j

2
>.

Then, we don’t need to include the full rotational 
structure, we can reduce the problem to two levels only.

c) Simplification of the problem

The three-body Hamiltonan in symmetrized 
hyperspherical coordinates is given by:
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operator

The main difficulty in using symmetrized 
hyperspherical coordinates lies in the fact that the 
grand angular momentum operator contains 
singularties (also called Eckart singularties) :

To threat carefully those singularities, we follow the 
procedure developed by B.Kendrick et al. [9] and 
adapt it for 3 identical particules. Therefore, we 
expand the 5D surface functions in terms of an 
adapted orthonormal basis functions given by :

With : 
- J the total angular momentum in the BF 
- Ω the projection of J along the BF z axis
- M the projection of J along the SF Z axis
- p the parity quantum number

The          functions can be expressed in terms of 
Jacobi polynomials and  the indices (μ,ν) are 
carefully selected to treat the singularities. 

For the θ operators :

 We use the DVR (discrete variable representation)  
method. The quadrature points θ

i
 and weights w

i
 

are obtained via a Gauss-Legendre quadrature.

For the f operators :

 We use the FBR (finite basis representation) for 
the Φ operators. The 1D numerical quadrature :

 are obtained using a Fourier quadrature.

b) Sequential diagonalization truncation

To reduce the total size of the Hamiltonian, we  
perform a SDT [9] (Sequential diagonalization 
truncation). The SDT is crucial for keeping the total 
matrix size reasonable.

The idea is to solve for each value of θ
i
 a 1D 

Hamiltonian (in Φ) and to keep only the 1D 
eigenvector Qi

n 
for which the associated 

eigenvalues E
i
 satisfy an energy cutoff condition. 

Finally, each block (i,i’) of the 5D Hamiltonian in the 
1D representation is reduced using the 
transformation :

c) Identical particle permutation

To treat properly the Eckart singularties, we cannot 
symmetrize our basis functions before the 
diagonalization. 

In order to obtain solutions which are either 
symmetric or antisymmetric under the permutations 
 we have constructed and used the operator σ

± 
:
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Hybrid method + SDT 
  + Symmetrization 

To obtain the different observables (cross 
section, rate coefficient), we must solve the 
usual set of coupled equations given by :

The angular 5D surface functions are 
obtained by solving :

Adiabatic 
energy

Due to the dipole-dipole-dipole interaction, the states |1,1,1> and 
|0,2,1> are highly coupled. The usual attractive s-wave is in this 
case repulsive at large distance. Then, we expect that the 3B 
short-range losses must be reduced.

More investigations are under way to complete our study.
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