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Questions: 

Is there a transition?

How does entanglement entropy scale?

Are properties ‘universal’?
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•Unitaries: 4-body Clifford random unitaries 
alternating over 4 sublattices

•Measurements: projective single spin and two-
spin measurements along z axis.



Entanglement entropy 
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P(1,−) = | ↓ ⟩⟨ ↓ |

P(2,−) = | ↓ ↓ ⟩⟨ ↓ ↓ | + | ↑ ↑ ⟩⟨ ↑ ↑ |

P(2,+) = | ↓ ↑ ⟩⟨ ↓ ↑ | + | ↑ ↓ ⟩⟨ ↑ ↓ |

P(1,+) = | ↑ ⟩⟨ ↑ |
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i) no corners

ii) aspect ratio can be kept fixed, or

iii) total size fixed, partition size 
varies
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In our manuscript, we incorrectly reported that

singular-value-decomposition (SVD) directly evaluates

the entanglement entropy of a stabilizer state generated

by the dynamics we are interested in. In fact, SVD only

provides a rigorous upper bound to the entropy
1
. We are

grateful to Y. Li and M. P. A. Fisher for correspondence

that elucidated this aspect.

Specifically, in the published version of the paper we

compute entanglement of stabilizers state by means of

the Hamma-Ionicioiu-Zanardi theorem. This requires the

computation of the matrix rank. SVD computes the

value of the rank in the field of real numbers R, while,

due to the algebraic structure of the stabilizer group, we

should have computed the rank for the field F2.

We observe that any matrix A with binary elements

aij = 0, 1 satisfy:

rankF2A  rankQA = rankRA. (1)

In the previous equation, F2 is the finite field over Z2,

while Q is the field of rational numbers.

Thus, in order to obtain the correct results for the

models described in the published version of the pa-

per, we need an exact computation of the rank over F2.

This computation is done by Gaussian elimination, which

works for any field K. The algorithm scales as O(N3
s )

with Ns / L2
the number of spins.

We have repeated all simulations and extracted the

entanglement entropy using Gaussian elimination. All

the corresponding results are presented below. The three

main findings of our work are confirmed, namely:

1. There is a universal critical behavior for 2+1D hy-

brid quantum circuits;

2. The critical point shows a multiplicative logar-

ithmic correction to the area law entanglement en-

tropy;

3. The universality class is different from that of 3D

percolation.

1 In 1D, results obtained via analyzing such upper bounds up in
chains with up to L = 128 spins return critical properties that
are the same (within error bars) of those obtained via Gaussian
elimination.
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Figure 1. Bare data for the hybrid random circuits entangle-

ment entropy computed through gaussian elimination. The

two upper panels pertain the rank-1 measurements, while the

lower ones the rank-2 measurements. The red line character-

ize the critical line in both the models.

The critical values of pc and ⌫ were instead not cor-

rect for both rank-1 and rank-2 measurement schemes.

The correct values are pc = 0.54(1), ⌫ = 0.67(1) and

pc = 0.84(1), ⌫ = 0.68(1) for rank-1 and rank-2 measure-

ment schemes, respectively. Thus, compared to the pre-

vious results, the critical exponent ⌫ for both model is

20% different from the values reported previously, while

the critical points pc are offset of 20% for rank-1 meas-

urements and of 6% for rank-2 measurements.

The compatibility of the critical exponent for both the
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Figure 4. Entanglement entropy for values around the crit-

icality at L = 64 for rank-1 (top panel) and rank-2 (bottom

panel) HRC. The blue line is a fit for a logarithmic behavior,

while the green ones are fit for an area-law.
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Conclusion I: 

✓entanglement transition 
features logarithmic 
violation of area law

- theory: emergent gauge 

fields + fermions? no 
equilibrium counterpart?


SA(p, L) = �trA⇢A(t) log ⇢A(t)

L = 64



Universality and critical 
exponents 2

Figure 2. Finite size scaling results for both the model. The

procedure is the one presented in the published version of

the paper. The updated results show a different estimate for

the both the considered model with respect to the published

results. In particular, the rank-1 model (left panel) gives pc =
0.54(1), ⌫ = 0.67(1). The rank-2 model (right panel) gives

pc = 0.84(1), ⌫ = 0.68(1). For convenience, the respective

critical values are pointed through a star in the figures.

considered hybrid random circuit models within 2% of

error suggests universality holds for the corrected data.

This exponent is > 30% different from that of 3D percol-

ation (⌫3Dperc = 0.87(1)), suggesting the 2+1D HRC belong

to a different universality class.

We conclude by pointing out that, despite the SVD

gives an upper bound of our data, it present hint of uni-

versality (see published version of the paper). It is pos-

sible that the SVD is capturing different features of the

model of interest, or some specific limit of it. We leave

further investigation on its relationship to Clifford hybrid

random circuits for future work.
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Figure 3. Data collapse on the results of the finite size

scaling in Fig. 2. Rank-1 HRC results are presented on the

upper panel, while the rank-2 HRC are on the lower one.

    

 

pc,rk1 = 0.54(1)

νrk1 = 0.67(1)

Conclusions II & III: 

✓‘universal’ properties (i.e., same critical exponent) 
in 2D Clifford circuits


✓incompatible with 3D percolation (0.877), which 
describes S0 in Haar circuits [Skinner et al., PRX 
2019], and displays area law scaling


Next:


- gauge-invariant circuits?

- stat-mech model?

- other entanglement signatures (concurrence, …)? 
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Figure 2. Finite size scaling results for both the model. The

procedure is the one presented in the published version of

the paper. The updated results show a different estimate for

the both the considered model with respect to the published

results. In particular, the rank-1 model (left panel) gives pc =
0.54(1), ⌫ = 0.67(1). The rank-2 model (right panel) gives

pc = 0.84(1), ⌫ = 0.68(1). For convenience, the respective

critical values are pointed through a star in the figures.

considered hybrid random circuit models within 2% of

error suggests universality holds for the corrected data.

This exponent is > 30% different from that of 3D percol-

ation (⌫3Dperc = 0.87(1)), suggesting the 2+1D HRC belong

to a different universality class.

We conclude by pointing out that, despite the SVD

gives an upper bound of our data, it present hint of uni-

versality (see published version of the paper). It is pos-

sible that the SVD is capturing different features of the

model of interest, or some specific limit of it. We leave

further investigation on its relationship to Clifford hybrid

random circuits for future work.
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Figure 3. Data collapse on the results of the finite size

scaling in Fig. 2. Rank-1 HRC results are presented on the

upper panel, while the rank-2 HRC are on the lower one.
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pc,rk2 = 0.84(1)

νrk2 = 0.68(1)


