Measurement-induced criticality in (2+1)-dimensional hybrid quantum circuits

X. Turkeshi
ICTP \& SISSA, Trieste

in collaboration with
M. Dalmonte and R. Fazio

erc

- Unitaries: 4-body Clifford random unitaries alternating over 4 sublattices
- Measurements: projective single spin and twospin measurements along z axis.

Questions:

Is there a transition?
How does entanglement entropy scale?
Are properties 'universal'?

Entanglement entropy scaling

$$
S_{A}(p, L)=-\overline{\operatorname{tr}_{A} \rho_{A}(t) \log \rho_{A}(t)}
$$

Conclusion I:

$\sqrt{ }$ entanglement transition
features logarithmic
violation of area law

- theory: emergent gauge fields + fermions? no equilibrium counterpart?

Universality and critical exponents

Conclusions II \& III:

\checkmark 'universal' properties (i.e., same critical exponent) in 2D Clifford circuits
\checkmark incompatible with 3D percolation (0.877), which describes SO in Haar circuits [Skinner et al., PRX 2019], and displays area law scaling

Next:

- gauge-invariant circuits?
- stat-mech model?
- other entanglement signatures (concurrence, ...)?

Phys. Rev. B 102, 014315 (2020) + erratum!

