Constructing a *U*(1) gauge symmetry in electronic circuits

Hannes Riechert Landry Bretheau Fred Jendrzejewski Heidelberg University Ecole Polytechnique Heidelberg University

 $\theta_{a_{i+1}}$

Lattice gauge fields

Gauge theories are fundamental to the Standard Model of High-Energy Physics.

Fermionic and bosonic particles represent matter field and force carriers.

Requirements for simulating a high-energy process:

ZUKUNFT SEIT 1386

- · Local implementation of gauge field,
- Include both fermions and bosons,
- Interactions preserve local gauge invariance
 → Gauss's law

A typical high-energy process is Schwinger pair production: The vacuum becomes unstable at very high static electric fields leading to electronpositron pair creation.

Local U(1) symmetry

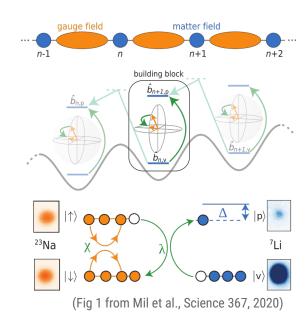
By discretization, a 1D field theory becomes a chain of sites and links with associated phases θ : $a \sim e^{i\theta}$

The link *b* absorbs the local phase transformation $\delta\theta$ of neighboring sites *a*:

 $H \supset a_i \, \frac{b_i}{b_i} a_{i+1}^{\dagger} \sim e^{i \left(\theta_{a_i} + \theta_{b_i} - \theta_{a_{i+1}}\right)}$

Cold atoms & ions

There are efforts to simulate increasingly complicated lattice field theories in *trapped ion* and in *cold atom experiments*, aimed at supplementing high-energy experiments for Standard Model theories.


Schwinger process Z2

U(1)

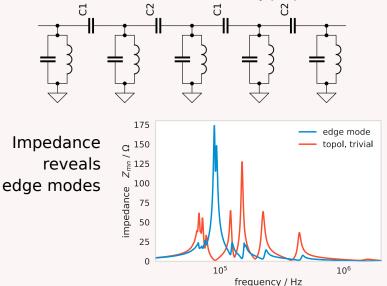
Martinez et al., Nature 534, 2016 Schweizer et al., Nat Phys 15, 2019 Mil et al., Sciene 367, 2020

Electronic circuits

Non-quantum but **fast** and **low-cost** experiment to to reach for larger lattices and more complicated gauge theories.

Local gauge freedom:

 $\hat{\theta}_{a_i}$


Topological circuit: SSH model

In the past electronic circuits have been used to engineer metamaterials. The *Su-Schrieffer-Heger* model is the simplest one with topological properties. Lee, Commun Phys 1, 2018

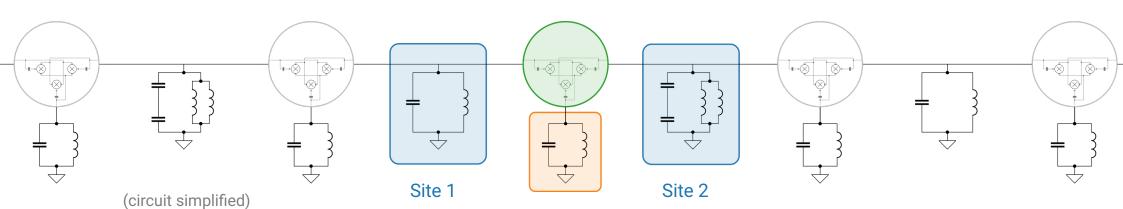
Nearest-neighbor hopping with alternating coupling:

• - <u>J'</u> • <u>J</u> • · · ·

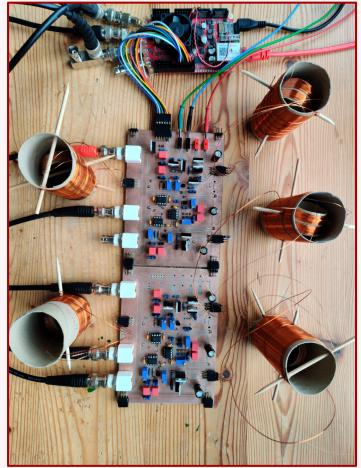
It is *topological*, because there is a one-to-one relation between *bulk* and *boundary properties*.

Lattice gauge theory \rightarrow circuit

Gauge theories appear with very close analogies in *quantum* and *classical mechanics*. We take the SSH Hamiltonian and supplement it with a link operator / variable *b*.

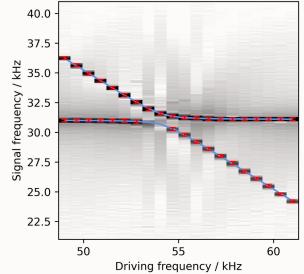

attice gauge theory	Ciı
field at position	LC
SSH hopping term	со
U(1) link: hopping	sy
U(1) link: gauge field	LC

Circuit LC oscillator coupling capacitor symmetric multipliers LC oscillator Flux linkage $\Phi = \int V \, \mathrm{d}t$ Charge $Q = \int I \, \mathrm{d}t$ Energy


 $n = a^*a = \frac{1}{2}\left(\frac{\Phi^2}{L} + \frac{Q^2}{C}\right)$

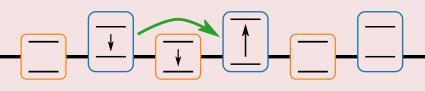
Complex variables: $a = \frac{1}{\sqrt{2\omega}} \left(\frac{\Phi}{\sqrt{L}} + i \frac{Q}{\sqrt{C}} \right) \qquad a_{j+1}^* b_j a_j + \text{H.c.} \sim Q_{a_j} Q_{b_j} Q_{a_{i+1}}$

$$H = \left[\omega \, a_1^* \, a_1 + 2\omega \, a_2^* \, a_2\right] + \left[\omega \, b^* \, b\right] + \left[\lambda \left(a_1^* \, b^* a_2 + a_2^* \, b \, a_1\right)\right]$$



The prototype

3 sites & 2 links on milled boards + Red Pitaya SoC.



Conserved quantities

Local phase trafo: $a_j \rightarrow a_j e^{i \theta_j}$ Absorbed by link: $b_j \rightarrow b_j e^{-i \theta_j + i \theta_{j+1}}$

Continuous transformation corresponds to local conserved quantities *G*

→ Gauss's law

 $G_{1} = a_{1}^{*} a_{1} - b^{*} b$ $G_{2} = a_{2}^{*} a_{2} + b^{*} b$ $N = a_{1}^{*} a_{1} + a_{2}^{*} a_{2}$

"Links track the hopping from site to site."

Rabi oscillations

2 sites with externally driven link

Site 1

→ Two-level system, static gauge field model.

missing simple predictions

 \rightarrow Can only compare to simulations.

Conservation laws:

Meaningful results despite violation / imperfect implementation?

Are there topological states?

Non-abelian SU(2) model?

Contact: Hannes Riechert riechert@kip.uni-heidelberg.de