. Guo, R. Dubessy, M. de Goër de Herve, A. Kumar, T. Badr, A. Perrin, L.

Longchambon and H. Perrin

Laboratoire de physique des lasers, Université Sorbonne Paris Cité
CNRS and Université Paris 13, 99 avenue J.-B. Clément, F-93430 Villetaneuse, France

SUPERFLUID ROTATION.

\star Superfluid $(\mathrm{SF}) \Rightarrow$ macroscopic wavefunction $\psi_{0}(\mathbf{r})=\sqrt{\rho(\mathbf{r})} e^{i \theta(\mathbf{r})}$
\star Irrotational velocity field $\mathbf{v}(\mathbf{r})=\frac{\hbar}{m} \nabla \theta$ defined for $\rho \neq 0$.
\star Quantized circulation $\oint_{\mathcal{C}} \mathbf{v} \cdot \mathrm{d} \mathbf{r}=n \frac{h}{m}$ nonzero around singular density regions : vortices.
Rotating SF : N_{v} vortices of circulation $\frac{h}{m} \Rightarrow$ $\left\langle L_{z}\right\rangle / N_{a t}=N_{v} \hbar$
Large number of vortices : $\boldsymbol{\nabla} \times \boldsymbol{v}=2 \boldsymbol{\Omega} \Rightarrow$ solid-
body rotation at angular frequency Ω.

A SMOOTH BUBBLE TRAP [1]

Trap frequencies
$\nu_{z}=356.5(2) \mathrm{Hz}$
$\nu_{r}=33.70(4) \mathrm{Hz}$
${ }^{87} \mathrm{Rb}$ BEC produced by an optically plugged quadrupole trap. Transfer to a bubbleshaped radiofrequency (rf) dressed trap \Rightarrow 2.5×10^{5} atoms pure BEC with $\mu=1.8 \mathrm{kHz}$.
The cloud is set into rotation by a rotating trap anisotropy.

RING PROFILE ANALYSIS

$\mu<\hbar \omega_{z} \Rightarrow$ quasi-2D regime \Rightarrow Berezinskii-Kosterlitz-Thouless superfluid transition.

Magenta: Radial density profile at $t=35 \mathrm{~s}$ Blue: Fit with Thomas-Fermi profile at zero temperature.
Red: Density profile at critical temperature of the BKT transition.
Dash line: without taking account the optical resolution $4 \mu \mathrm{~m}$
\Rightarrow superfluid 2D quasi-condensate.

References

References

[1] K. Merloti, et al. A two-dimensional quantum gas in a magnetic trap. NJP, 15033007 (2013)
[2] A. Fetter, et al. Rapid rotation of a Bose-Einstein condensate in a harmonic plus quartic trap. Phys. Rev. A, 71, 013605 (2005).
[3] Y. Guo, et al. Supersonic rotation of a superluid : a long-lived dynamical ring. Phys. Rev. Lett, 124, 025301 (2020)
(Editors'suggestion, Featured in a Synopsis in Physics)

.FOR A TRAPPED BEC

Hamiltonian in the rotating frame at $\Omega: H_{\mathrm{rot}}=H_{0}-\Omega L_{z}$ with $L_{z}=\left(x p_{y}-y p_{x}\right)$ $\Rightarrow H_{\mathrm{rot}}=\frac{(p-q \mathcal{A})^{2}}{2 M}+V(r)-\frac{1}{2} \mathbf{M} \Omega^{2} \mathbf{r}^{2}$ where $q \mathcal{A}=2 M \Omega\left(-y \mathbf{e}_{x}+x \mathbf{e}_{y}\right)$ \Rightarrow Effective centrifugal potential $V_{\mathrm{eff}}(r)=V(r)-\frac{1}{2} M \Omega^{2} r^{2}$.

Harmonic trap

$V_{\mathrm{eff}}(r)=\frac{1}{2} M{\omega_{r}^{\prime 2}}^{2} r^{2}$ with $\omega_{r}^{\prime 2}=\omega_{r}^{2}-\Omega^{2}$
For $\Omega \simeq \omega_{r}$ analogous to free charge q in $B=\nabla \times \mathcal{A} \propto \Omega$.
Description in terms of Landau levels \Rightarrow quantum Hall effect with neutral atoms?
 $\Omega \longrightarrow \omega_{r}:$
vanishing
trapping
frequency

To preserve confinement : anharmonic potential.

Anharmonic trap

$$
\begin{gathered}
\Omega=0 \\
\Omega=\omega_{r}
\end{gathered}
$$

$$
\Omega=1.15 \omega_{r}
$$

$\Omega>\omega_{r}:$ dynamical ring.
Vortices in the bulk

+ topologically protected multi-charged vortex in the center [2].

Our anharmonic trap : a bubble trap!

From a connected SF to a dynamical Ring [3]

Principle of the experiment : trap deformation of anisotropy $\varepsilon=\frac{\omega_{x}^{2}-\omega_{y}^{2}}{2 \omega_{r}^{2}}$ is rotated at $\nu_{\text {rot }}=31 \mathrm{~Hz}$ for 11 half-turns. The excited cloud evolves freely in the rotationally invariant trap, with an rf-knife setting the trap depth.

CONCLUSION AND PERSPECTIVE

- First experimental realization of a superfluid dynamical ring, rotating over a minute at more than ten times the speed of sound.
- Supersonic rotation \Rightarrow how would a localized defect dissipate superfluidity?
- Towards the giant vortex regime \Rightarrow accessible for an atom number of 400 atoms
- Experimental evidence of weakly damped collective quadrupole modes
- Observed frequency of the low frequency mode does not agree with hydrodynamic calculations \Rightarrow need more refined theoretical models ?

