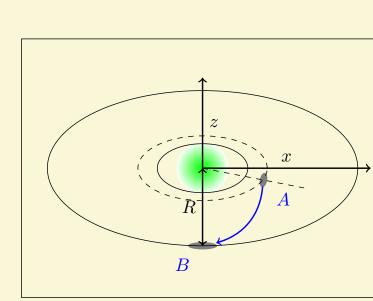


Supersonic rotation of a superfluid: a long-lived dynamical ring

Y. Guo, R. Dubessy, M. de Goër de Herve, A. Kumar, T. Badr, A. Perrin, L.

LONGCHAMBON AND H. PERRIN

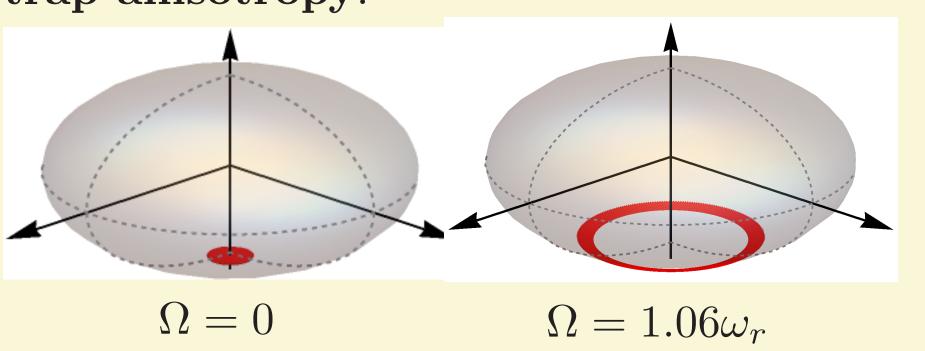
Laboratoire de physique des lasers, Université Sorbonne Paris Cité CNRS and Université Paris 13, 99 avenue J.-B. Clément, F-93430 Villetaneuse, France


SUPERFLUID ROTATION...

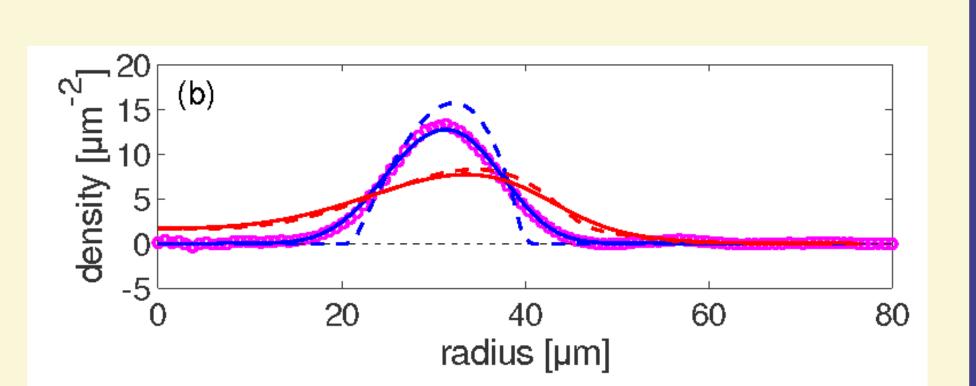
- \bigstar Superfluid (SF) \Rightarrow macroscopic wavefunction $\psi_0(\mathbf{r}) = \sqrt{\rho(\mathbf{r})}e^{i\theta(\mathbf{r})}$
- ★ Irrotational velocity field $\mathbf{v}(\mathbf{r}) = \frac{\hbar}{m} \nabla \theta$ defined for $\rho \neq 0$.
- ★ Quantized circulation $\oint_{\mathcal{C}} \mathbf{v} \cdot d\mathbf{r} = n \frac{h}{m}$ nonzero around singular density regions : vortices.

Rotating SF: N_v vortices of circulation $\frac{h}{m} \Rightarrow \langle L_z \rangle / N_{at} = N_v \hbar$

Large number of vortices : $\nabla \times v = 2\Omega \Rightarrow \text{solid-body rotation}$ at angular frequency Ω .


A SMOOTH BUBBLE TRAP [1]

87Rb BEC produced by an optically plugged quadrupole trap.


Transfer to a bubble-shaped shaped radio-frequencies: $\nu_z = 356.5(2) \, \text{Hz}$ $\nu_r = 33.70(4) \, \text{Hz}$ Transfer to a bubble-radio-frequency (rf) dressed trap \Rightarrow $2.5 \times 10^5 \, \text{atoms pure}$ BEC with $\mu = 1.8 \, \text{kHz}$.

The cloud is set into rotation by a **rotating trap anisotropy**.

RING PROFILE ANALYSIS

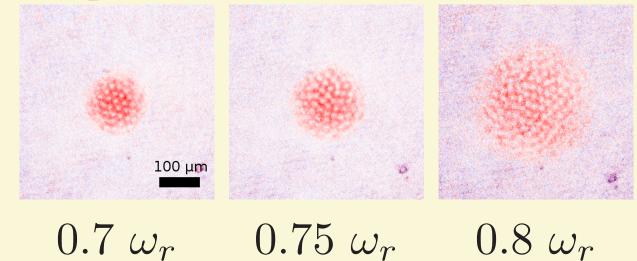
 $\mu < \hbar\omega_z \Rightarrow \text{quasi-2D regime} \Rightarrow$ Berezinskii-Kosterlitz-Thouless superfluid transition.

Magenta: Radial density profile at $t=35\,\mathrm{s}$ Blue: Fit with Thomas-Fermi profile at zero temperature.

Red: Density profile at critical temperature of the **BKT** transition.

Dash line: without taking account the optical resolution $4\,\mu m$

 \Rightarrow superfluid 2D quasi-condensate.


...FOR A TRAPPED BEC

Hamiltonian in the rotating frame at $\Omega: H_{\text{rot}} = H_0 - \Omega L_z$ with $L_z = (xp_y - yp_x)$ $\Rightarrow H_{\text{rot}} = \frac{(p-q\mathcal{A})^2}{2M} + V(r) - \frac{1}{2}\mathbf{M}\Omega^2\mathbf{r}^2$ where $q\mathcal{A} = 2M\Omega(-y\mathbf{e}_x + x\mathbf{e}_y)$. \Rightarrow Effective **centrifugal potential** $V_{\text{eff}}(r) = V(r) - \frac{1}{2}M\Omega^2r^2$.

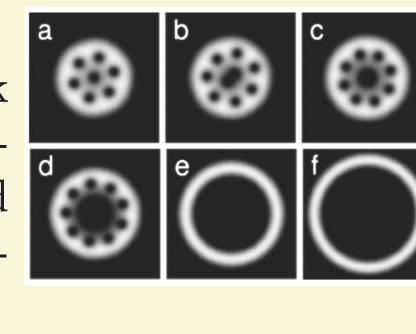
Harmonic trap

 $V_{\text{eff}}(r) = \frac{1}{2}M\omega_r'^2 r^2 \text{ with } \omega_r'^2 = \omega_r^2 - \Omega^2$ For $\Omega \simeq \omega_r$ analogous to free charge q in $B = \nabla \times \mathcal{A} \propto \Omega$.

Description in terms of **Landau levels** \Rightarrow quantum Hall effect with neutral atoms?

 $\Omega \longrightarrow \omega_r:$ vanishing

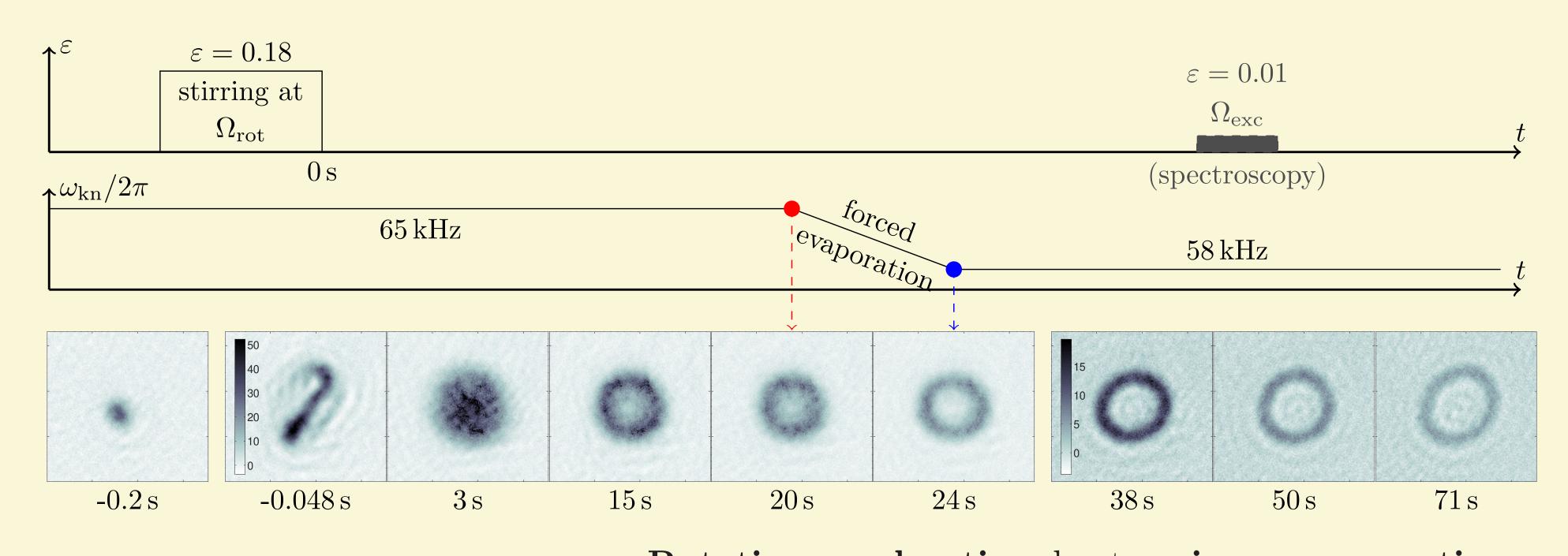
trapping

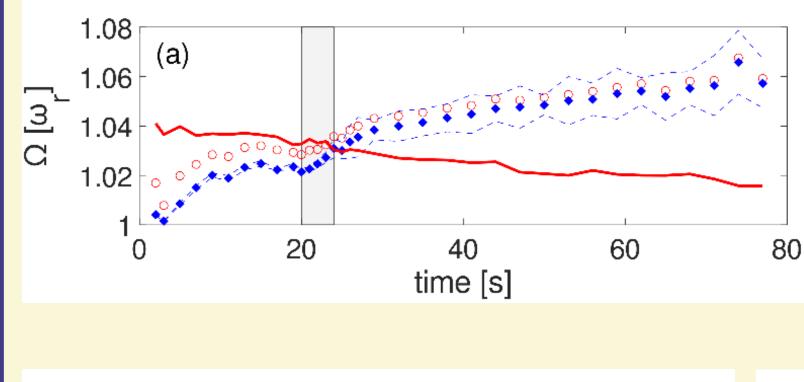

frequency

To preserve confinement : anharmonic potential.

Anharmonic trap $\Omega = 0$ $\Omega = \omega_r$ $\Omega = 1.15 \ \omega_r$

 $\Omega > \omega_r$: dynamical ring.


Vortices in the bulk + topologically protected multi-charged vortex in the center [2].



Our anharmonic trap: a bubble trap!

From a connected SF to a dynamical ring [3]

Principle of the experiment: trap deformation of anisotropy $\varepsilon = \frac{\omega_x^2 - \omega_y^2}{2\omega_r^2}$ is rotated at $\nu_{\rm rot} = 31\,\mathrm{Hz}$ for 11 half-turns. The excited cloud evolves freely in the rotationally invariant trap, with an rf-knife setting the trap depth.

Excitation frequency [Hz]

1.2

cal ring. $\begin{array}{c}
\Omega = 1.05\omega \\
\Omega = 1.04\omega
\end{array}$ $\begin{array}{c}
\Omega = 1.02\omega \\
\Omega = 0.98\omega
\end{array}$ Excitation frequency [Hz]

Rotation acceleration due to spin-up evaporation from the rf-knife. Forced evaporation to cross the hole-formation rotation rate. For $\Omega \sim 1.05~\omega_{\perp} \Rightarrow v = 7.4 \pm 0.3~\mathrm{mm/s}$

For $\Omega \sim 1.05 \ \omega_{\perp} \Rightarrow v = 7.4 \pm 0.3 \ \mathrm{mm/s}$ Local peak speed of sound: $c = 0.4 \pm 0.03 \ \mathrm{mm/s}$

ightharpoonup Local peak speed of sound: $c=0.4\pm0.03~\mathrm{mm/s}$ ightharpoonup ightha

⇒ supersonic high angular momentum dynamical ring.

Collective mode spectroscopy:

the mode m = -2resonant excitation changes sign and co-rotates with the atomic flow \Rightarrow not predicted by

⇒ not predicted by diffuse vorticity hydrodynamic predictions.

REFERENCES

References

- [1] K. Merloti, et al. A two-dimensional quantum gas in a magnetic trap. $NJP, \, {\bf 15} \,\, 033007 \,\, (2013).$
- [2] A. Fetter, et al. Rapid rotation of a Bose-Einstein condensate in a harmonic plus quartic trap. Phys. Rev. A, 71, 013605 (2005).
- [3] Y. Guo, et al. Supersonic rotation of a superluid: a long-lived dynamical ring. Phys. Rev. Lett, **124**, 025301 (2020)
- (Editors'suggestion, Featured in a Synopsis in Physics)

CONCLUSION AND PERSPECTIVE

- First experimental realization of a superfluid dynamical ring, rotating over a minute at more than ten times the speed of sound.
- Supersonic rotation \Rightarrow how would a localized defect dissipate superfluidity?
- Towards the **giant vortex** regime \Rightarrow accessible for an atom number of 400 atoms.
- Experimental evidence of weakly damped collective quadrupole modes.
- Observed frequency of the low frequency mode does not agree with hydrodynamic calculations \Rightarrow need more refined theoretical models?