Unraveling two-photon entanglement via the squeezing spectrum of light traveling through nanofiber-coupled atoms

J. Hinney¹, A. Prasad¹, S. Mahmoodian², K. Hammerer², A. Rauschenbeutel^{1,3}, P. Schneeweiss^{1,3}, J. Volz^{1,3} and M. Schemmer³

¹TU Wien-Atominstitut, ²Leibniz University Hannover, ³HU Berlin

- Ensemble of laser cooled atoms coupled to evanescent field of a nanofiber
- 1D array of atoms in fiber guided dipole traps
- Probe atoms near-resonantly through nanofiber
- Balanced homodyne detection for squeezing measurement

Squeezing spectrum

(a)

- Non-linear scattering
 - => Energy-time entangled photons
- Normally ordered squeezing spectrum: $S_{\theta}(\omega) = \int_{-\infty}^{\infty} d\tau \langle : \hat{X}_{\theta}(0) \hat{X}_{\theta}(\tau) : \rangle e^{i\omega\tau}$
 - Coherent state $S_{\theta}(\omega) = 0$
 - Limit of zero noise $S_{\theta}(\omega) = -1/4$
- Reabsortion close to resonance => sidebands

$$\begin{array}{c} \theta = \pi/2, 3\pi/2 \\ \theta = 0, \pi \end{array}$$

(c)

 ω_0

 $\Gamma_{\rm tot}$

(b)

 ω_0

Theory: Scattering matrix formalism based on Bethe Ansatz solutions

Reconstructing the entangled part of the two-photon wavefunction

WD H BERLIN.

 $\phi_N(\omega) = \left| \, \mathrm{d}\tau \, \phi_N(\tau) e^{i\omega\tau} \right.$

• Two-photon wavefunction consists of separable and entangled part

$$\psi_2\left(x_1, x_2\right) \propto t^{2N} - \phi_N\left(x_1 - x_2\right)$$

- Low saturation limit:
 - Squeezing is related entangled part of the wavefunction $\phi_N(\omega) = |\phi_N(\omega)| e^{i\phi_N(\omega)}$

$$S_{\theta}(\omega) \propto \cos \left[\theta + \varphi_N(\omega)\right] |\phi_N(\omega)|$$

• Reconstruct two-photon wave function $\phi_N(\omega)$ vs. atom number ($\varphi_N(\omega) = 0$)

Reconstructing the entangled part of the two-photon wavefunction — detuned

Angle φ_N from fit of cosine-modulation

OLD T-U

Reconstruction technique for entangled two-photon wavefunction $\phi(\tau)$

