Supersolid Stripe Crystal from Finite-Range Interactions on a Lattice

Guido Masella 1, Adriano Angelone ${ }^{2}$, Fabio Mezzacapo ${ }^{3}$, Guido Pupillo ${ }^{1}$, and Nikolay V. Prokof'ev ${ }^{1,4}$
\& Tao Ying ${ }^{5}$, and Marcello Dalmonte ${ }^{2}$
${ }^{1}$ icFRC and ISIS (UMR 7006), Université de Strasbourg and CNRS, 67000 Strasbourg, France
${ }^{2}$ Abdus Salam International Centre for Theoretical Physics and SISSA, Trieste, Italy
${ }^{3}$ Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
${ }^{4}$ Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA
${ }_{5}$ Department of Physics, Harbin Institute of Technology, 150001 Harbin, China

The search for phases of matter where exotic states may be stabilized by the simultaneous breaking of different symmetries is a subject of central interest in condensed matter physics. A prominent example is supersolidity (i.e. coexistence of superfluidity and cristalline order) ${ }^{1}$. In this context, a large class of Extended-range Repulsive (pair-wise) Interactions (ERI) has recently elicited considerable scientific attention. ERI are of immediate interest for experiments employing Rydberg-dressed atoms ${ }^{2}$. At high enough densities ERI are characterized by clusterization, a feature that has been shown to be linked to supersolidity in two- dimensional continuous space ${ }^{3}$ and supersolidity and (super)glassines (the latter in the absence of extenal frustration) on a triangular lattice ${ }^{4}$. Here we are interested in studying the ground state phases of monodisperse bosonic particles on a square lattice interacting via ERI of soft-shoulder type.

Extended Range Interactions (ERI)

- Rydberg dressed-atoms ${ }^{7}$
- Experimentally realized ${ }^{2}$
- Superglass (glassy + superfluid) phase on a triangular lattice ${ }^{4}$

Supersolid formation with ERI

- Free space tunneling of particle between superfluid droplets ${ }^{5}$
- NEW Cluster self-assembly + superfluid exchanges between clusters on a lattice ${ }^{6}$ (this poster!)

[^0]
Model Hamiltonian

We study hard-core bosons on a square lattice:

Cluster formation for $r_{c}>1$ and high enough density ρ. We study the case of $\rho=5 / 36$ and $r_{c}=2 \sqrt{2}$.

Methods and Observables

We determine the ground state phases of the proposed model by means of Path integral Monte Carlo simulations based on the Worm Algorithm ${ }^{1}$.

The Worm algorithm is a numerically exact technique when applied to unfrustrated bosonic models

We compute the following observables:

- Superfluidity \rightarrow Superfluid Fraction

$$
\rho_{s} / \rho=\frac{\left\langle W_{x}^{2}+W_{y}^{2}\right\rangle}{4 t \rho \beta} \quad\left(W_{x, y} \equiv \text { winding number }\right)
$$

- Crystalline structure \longrightarrow Structure Factor

$$
S(\mathbf{k})=\frac{\left\langle\sum_{i, j} e^{i \mathbf{k} \cdot \mathbf{r}_{i j}} n_{i} n_{j}\right\rangle}{N^{2}} \quad(\mathbf{k} \equiv \text { lattice momentum })
$$

- Long-range off-diagonal order \longrightarrow Green Function

$$
G(\mathbf{r})=\frac{\left\langle\sum_{i} b_{i}^{\dagger} b_{i+r}\right\rangle}{N} \quad(N \equiv \text { number of sites })
$$

[^1]
Stripe Supersolids and Crystals

We investigate the ground state phase diagram of our model as a function of the interaction strength V / t. We find ${ }^{2}$:

Isotropic Supersolid

- Isotropic long-range oerder with S (k peaks at

$$
\begin{aligned}
& \mathbf{k}=\left(0, \pm k_{c}\right),\left(\pm k_{c}, 0\right), \\
& k_{c}=2 \pi \frac{7}{24} .
\end{aligned}
$$

- Isotropic superfluid exchanges
- Low- V : Superfluid (SF)
- High- V : Stripe Crystal (SC)
- Intermediate- V :
- Isotropic Supersolid (IS)
- Stripe Supersolid (SS)

Supersolid-Supersolid transition

Figure on the left: Panel (a)Structure factor components for the isotropic and anisotropic orders as a function of the interaction strength V / t Panel (b) Superfluid fraction and ratio between superfluid responses as a function of V / t.

Anisotropic Supersolid

- Crystalline order only on y-axis with $S(\mathbf{k})$ peaks at

$$
\begin{aligned}
& \mathbf{k}=\left(0, \pm k_{c}\right),\left(\pm k_{c}, 0\right) \\
& k_{c}=2 \pi \frac{7}{24} .
\end{aligned}
$$

- Isotropic superfluid exchanges

Figure: Ground state phase diagram

Figure: Averaged site-density maps. The size of the dots is proportional to the occupation of the corresponding lattice site. Colors match the phases above

[^2]
Out-of-equilibrium scenarios

(Super)Glass

- Frozen degrees of freedom + lack of structural order
- Finite Edwards-Anderson parameter ${ }^{1}$

$$
\tilde{q}_{\mathrm{EA}}=\left(\sum_{i}\left\langle n_{i}-\rho\right\rangle^{2}\right) /(N \rho(1-\rho))
$$

- Superglass: glassy behaviour + superfluidity

We make use of simulated quenches from $T \rightarrow \infty$ configurations to drive the system out-of-equilibrium (OOE).

We find ${ }^{2}$

- Always isotropic OOE (super) solid states
- Equilibrium crystal \rightarrow OOE Glass
- No Superglass

Figure: (left) Density snapshots of equilibrium and OOE isotropic (super)solids, (right) comparison of annealing (equilibium) and quench (OOE) values for the superfluid density (top) and maximum structure factor (bottom) as functions of V / t.

Université

de Strasbourg

[^3]
[^0]: ${ }^{1}$ Boninsegni, M. et al. Rev. Mod. Phys. 84, 759-776 (May 11, 2012); ${ }^{2}$ Henkel, N. et al. Phys. Rev. Lett. 104, 195302 (May 11, 2010), Jau, Y.-Y. et al. Nature Physics 12, 71-74 (Jan. 2016), Zeiher, J. et al. Nature Physics 12, 1095-1099 (Dec. 2016); ${ }^{3}$ Cinti, F. et al. Nature Communications 5, 3235 (Feb. 4, 2014); ${ }^{4}$ Angelone, A. et al. Phys. Rev. Lett. 116, 135303 (Apr. 1, 2016); ${ }^{5}$ Cinti, F. et al. Phys. Rev. Lett. 105, 135301 (Sept. 21, 2010); ${ }^{6}$ Masella, G. et al. Phys. Rev. Lett. 123, 045301 (July 26, 2019); ${ }^{7}$ Pupillo, G. et al. Phys. Rev. Lett. 104, 223002 (June 1, 2010), Johnson, J. E. et al. Phys. Rev. A 82, 033412 (Sept. 14, 2010);

[^1]: ${ }^{1}$ Prokof'ev, N. V. et al. J. Exp. Theor. Phys. 87, 310-321 (Aug. 1, 1998)

[^2]: ${ }^{2}$ Masella, G. et al. Phys. Rev. Lett. 123, 045301 (July 26, 2019)

[^3]: ${ }^{1}$ Carleo, G. et al. Phys. Rev. Lett. 103, 215302 (Nov. 18, 2009)
 ${ }^{2}$ Angelone, A. et al. Phys. Rev. A 101, 063603 (June 1, 2020)

