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Background
Light-induced self-organization can be observed in a nonlinear medium e.g. using the single-mirror feedback scheme based on diffractive coupling [1]. 
Early observations employed hot atomic vapors [2, 3] and other nonlinear media [4]. Using large clouds of laser-cooled Rb atoms, we demonstrated 
optomechanical patterns [5], excited-state patterns [6], and various kinds of magnetic patterns [7, 8]. The present work discusses the transition between 
two different self-organized magnetic phases.
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Abstract
We investigated the interplay between two mechanisms for magnetic self-organization in a cloud of cold atoms subjected to a retro-reflected laser 
beam. The transition between two different phases, one linked to a spontaneous spatial modulation of the Dm = 2 ground-state coherence and the other 
to that of the magnetic orientation (spin), can be induced by tuning either a weak magnetic field or the laser intensity. The experimental observations 
are compared to extended numerical simulations.

Ground-state coherence vs orientation: competing mechanisms for light-induced
magnetic self-organization in cold atoms
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Two self-organized magnetic phases

A large cloud of cold 87Rb atoms (diameter > 1 cm, 
resonant optical density ~  100) is produced in a 
magneto-optical trap. A red-detuned laser beam is 
sent through the cloud and retro-reflected. A 
magnetic field is applied along the direction of 
incident light polarization (x). The light intensity 
distribution in the transverse plane (x, y) is recorded 
both in near- and far-field. The pattern formation 
dynamics is monitored by a photomultiplier.   
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