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Abstract

We 1nvestigated the interplay between two mechanisms for magnetic self-organization in a cloud of cold atoms subjected to a retro-reflected laser

beam. The transition between two different phases, one linked to a spontaneous spatial modulation of the Am = 2 ground-state coherence and the other
to that of the magnetic orientation (spin), can be induced by tuning either a weak magnetic field or the laser intensity. The experimental observations

are compared to extended numerical simulations.

Background

Light-induced self-organization can be observed 1n a nonlinear medium e.g. using the single-mirror feedback scheme based on diffractive coupling [ 1].
Early observations employed hot atomic vapors [2, 3] and other nonlinear media [4]. Using large clouds of laser-cooled Rb atoms, we demonstrated
optomechanical patterns [5], excited-state patterns [6], and various kinds of magnetic patterns |7, 8]. The present work discusses the transition between

two different self-organized magnetic phases.
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Experimental Setup

E4 BS
I

A4 |

PBS

BS

o)

NF FF
05—

A large cloud of cold *’Rb atoms (diameter > 1 cm,
resonant optical density ~ 100) 1s produced in a
magneto-optical trap. A red-detuned laser beam 1s
sent through the cloud and retro-reflected. A
magnetic field 1s applied along the direction of
incident light polarization (x). The light intensity
distribution in the transverse plane (X, y) 1s recorded
both 1n near- and far-field. The pattern formation
dynamics 1s monitored by a photomultiplier.
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Theoretical model and Numerics

magnetic moments:
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Two self-organized magnetic phases
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} — two different phases
By =B =0

Anti-ferromagnetic (AFM) phase

e around BX =0

e long-range order
® square symmetry
e spatial modulation of orientation

» v - - -
r’.‘.. '.‘.“ |..-...'
RSO0 l‘..'-i.. 0

e 0, . _ e
.'h..'l.'.-q l'.".‘.....'"
‘.._'.. - .'... I... - i H_ ¢

oct—o orientation

(experiment) (numerics)

Ground-state coherence (GSC) phase
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e no long-range order
e symmetry: stripes, zig-zags, checkerboards, squares
e spatial modulation of ground-state coherence
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Outlook

e understand the nature of different transitions
e optically-controllable localized magnetic structures
e Interplay between magnetic and optomechanical self-organization

Magnetic field—induced phase transition
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e AFM (orientation) destroyed by B_

e critical slowing down of AFM near transition
e GSC threshold = independent of B_

Intensity—induced phase transition
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e vanishing of GSC before transition
e critical slowing down of GSC near threshold
e critical slowing down of AFM near transition

First order transition ?

Intermittent
behavior of AFM
near transition

| | | | | | Gaussian beam
0 20 40 » 60 30 100 simulation
sat

plane wave simulation

University of

*x
Strathclyde

Glasgow




	Diapo 1

