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We study bosons in a one-dimensional hard-wall box potential. In the case of contact interaction, the
system is exactly solvable by the Bethe ansatz, as first shown by Gaudin in 1971. Although contained in the
exact solution, the boundary energy in the thermodynamic limit for this problem is only approximately
calculated by Gaudin, who found the leading order result at weak repulsion. Here we derive an exact
integral equation that enables one to calculate the boundary energy in the thermodynamic limit at an
arbitrary interaction. We then solve such an equation and find the asymptotic results for the boundary
energy at weak and strong interactions. The analytical results obtained from the Bethe ansatz are in
agreement with the ones found by other complementary methods, including quantum Monte Carlo
simulations. We study the universality of the boundary energy in the regime of a small gas parameter by
making a comparison with the exact solution for the hard rod gas.
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Experimental realizations of cold gases very often
involve an external confining potential to localize the
atom motion in certain directions. The harmonic well is a
common choice for the trapping potential [1]. Recently,
experiments with a flat box potential have been carried out
in three [2,3], two [4], and one [5] dimension(s). The
advantage of a flat box confinement is that it permits a
creation of a uniform system with hard-wall boundaries.
The finite-size effects become visible, e.g., in the lowest
collective excitations [3], which are starkly different from
the behavior of the lowest frequency mode of a harmoni-
cally trapped gas, which is independent [6] of the
interaction. Another physical realization is a Bose gas
in the presence of a single pinned impurity of infinite
repulsion, which in one dimension effectively generates a
similar effect to that of a hard wall. Physically, such an
impurity can be a pinned atom of a different species or a
laser creating a hole [7] in the density.
A physical system of immense theoretical and exper-

imental interest is the one of one-dimensional bosons with
contact interaction, which is known as the Lieb-Liniger
model [8]. Its remarkable realizations [1,9–11] offer a
fertile ground since many theoretical results for this model
can be tested and verified with unprecedented accuracy.
This includes quantum dynamics [12,13], solitons [14], the
crossover from the repulsive to attractive interaction regime
[15], quantum correlations [16–18], etc. On the theoretical
side, the Lieb-Liniger model is exactly solvable [8,19,20]
by the Bethe ansatz [21]. Initially, the solution was found
for periodic boundary conditions [8], but later also for zero
boundary conditions [22]. The latter case corresponds to
bosons in an enclosed hard-wall box imposing the nulli-
fication of the wave function at the two systems’ ends.

The case with zero boundary conditions shows some
important qualitative differences. In particular, it is char-
acterized by the boundary energy EB, which represents the
nonextensive part of the ground-state energy E0 in the
thermodynamic limit [22,23]

E0 ¼ Nϵ0 þ EB þ Oð1=NÞ: ð1Þ

Here ϵ0 is the thermodynamic value for the ground-state
energy per particle, while N is the total number of bosons.
Note that the bulk energy ϵ0 is identical for the two
geometries, while the boundary energy EB is a surface
effect and it exists only in the case of zero boundary
conditions [22,24]. The physical origin of EB is the increase
in the system energy due to the hard-wall potential, which
causes the density to be nonuniform and also increases its
value in the bulk region. A node in the many-body wave
function at the edge leads to its nonzero gradient, increasing
the kinetic energy. The typical size of the density depletion
near the boundary is on the order of the healing length ξ and
thus involves ξn particles, where n is the (mean) boson
density. This enables us to estimate the boundary energy as
EB ∼ ℏ2n=mξ, where m denotes the mass of bosons.
The Lieb-Liniger model is characterized by two types of

elementary excitations [19]. In addition to the particlelike
type-I branch, the model supports holelike type-II excita-
tions. At weak interaction, they are identified with gray
soliton solutions of the mean-field Gross-Pitaevskii equa-
tion [25–28]. A gray soliton corresponds to a localized
perturbation in the boson density moving at a fixed
velocity. In the case of a complete local suppression of
the density, the soliton is called dark; it becomes static and
its density profile is quite reminiscent of the one near the
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boundaries in the system with the hard-wall potential. In the
weakly interacting regime, the two density deeps, around
the center of the dark soliton and around the boundary, are
described by the same Gross-Pitaevskii equation. Since the
energy functional is local in the latter theory, the energy of
the dark soliton coincides with the total boundary energy
arising from the two ends, EB. This simple reasoning leads
to the result

EB ¼ 8

3
ϵ

ffiffiffi
γ

p
: ð2Þ

Here γ ≪ 1 is the dimensionless interaction strength
defined below, while ϵ ¼ ℏ2n2=2m is the natural unit of
energy for our system. We notice that at γ ≪ 1 the healing
length is ξ∼1=n

ffiffiffi
γ

p
and the previous estimate of EB is

consistent with Eq. (2).
In Lieb’s classification [19], the dark soliton corresponds

to the type-II excitation with zero velocity, i.e., the (Fermi)
momentum πℏn. In the limit of strong interaction,
γ → ∞, its energy can be easily found by using the dual
model of free fermions (Tonks-Girardeau gas) [29,30]. The
type-II excitation corresponds in the fermionic picture to
the excitation where a fermion is promoted from the bottom
to the top of the Fermi sea. Its energy is therefore identical
to the Fermi energy π2ϵ. On the other hand, the ground-state
energy ofN free fermions in a hard-wall box of the size L is
E0 ¼ ðπ2ℏ2=2mL2Þ

PN
j¼1 j

2. Using Eq. (1) one then finds
the boundary energy

EB ¼ π2

2
ϵ; ð3Þ

which is twice as small as the energy of the type-II
excitation. The above simple arguments show that the dark
soliton (i.e., the type-II excitation of the momentum πℏn)
and the boundary energy are different, contrary to the
indication that might have appeared when studying the
γ ≪ 1 case.
In Ref. [22], Gaudin derived the expression for the

boundary energy of the Lieb-Liniger model in terms of an
integral equation (see further below) that should be
presumably valid at any interaction γ. However, he only
solved it at weak interaction, finding the expression (2).
In this Letter, we show that Gaudin’s expression for the

boundary energy actually coincides with the energy of the
type-II excitation of the momentum πℏn at any γ.
Moreover, it differs from the exact boundary energy already
at the subleading order O ðγÞ in Eq. (2). Furthermore, at
strong interaction, Gaudin’s expression overestimates the
boundary energy two times. Instead, here we derive an
exact expression for EB and evaluate it analytically at
strong and weak interactions. In addition, we use the
Monte Carlo method as an independent check of our
findings. Finally, by making a comparison with the exact
solution for the gas of hard rods, we demonstrate that the

behavior of the boundary energy of various systems in the
regime of small densities is universal in terms of the gas
parameter.
We consider bosons in one dimension described by the

Lieb-Liniger Hamiltonian [8,20]

H ¼ ℏ2

2m

"
−
XN

i¼1

∂2

∂x2i
þ c

X

i≠j
δðxi −xjÞ

#
: ð4Þ

The local repulsion is described by the coupling constant c
in Eq. (4), while the thermodynamic properties of the
system are governed by the dimensionless parameter
γ ¼ c=n, where n ¼ N=L is the linear density. Here N
is the number of bosons and L is the system size. We study
the cases with periodic and zero boundary conditions
corresponding, respectively, to the bosons on a ring and
in a box trap.
The Hamiltonian (4) can be diagonalized by the Bethe

ansatz. The resulting equations for the ground state of a
system with periodic boundary conditions of length 2L
with 2N particles have the form [8,20]

2kiL ¼ 2π

$
i−

2N þ 1

2

%
−
X2N

j¼1

θðki −kjÞ; ð5Þ

where θðkÞ ¼ 2 arctanðk=cÞ and i ¼ 1; 2;…; 2N. The sys-
tem of equations (5) has a unique solution with distinct
quasimomenta ki, where one-half of them are negative
(ki < 0 for 1 ≤i ≤N), while the remaining ones are
positive (ki > 0 for N þ 1 ≤i ≤2N). Moreover, the qua-
simomenta are positioned symmetrically around zero, i.e.,
ki ¼ −k2Nþ1−i. It will be convenient to shift the indices in
Eq. (5): i → i−N −1 for 1 ≤i ≤N and i → i−N for
N þ 1 ≤i ≤2N, so that one has the property ki ¼ −k−i.
This enables us to eventually write

kiL ¼ π

$
i−

1

2

%
−
1

2

XN

j¼1

½θðki −kjÞ þ θðki þ kjÞ&; ð6Þ

where i ¼ 1; 2;…; N. The ground state of the
Hamiltonian (4) is thus characterized by the set of N
positive quasimomenta obtained by solving the system (6),
while the negative ones are automatically obtained from
them. The ground-state energy is then given as EðPÞð2NÞ ¼
ðℏ2=mÞ

PN
i¼1 k

2
i , where the superscript denotes periodic

boundary conditions.
As first shown by Gaudin [22], the Hamiltonian (4) can

also be diagonalized for a system in a box with zero
boundary conditions imposed on the wave function. The
Bethe ansatz equations for the ground state in this case, for
a system of length L with N particles, are given by [22]
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k̄iL ¼ π þ
XN

j¼1
j≠i

!
arctan

c
k̄i − k̄j

þ arctan
c

k̄i þ k̄j

"
; ð7Þ

where i ¼ 1; 2;…; N. Equation (7) allows only for k̄i > 0.
Using the identity arctan xþ arctanð1=xÞ ¼ πsgnðxÞ=2,
one can reexpress Eq. (7) as

k̄iL ¼ πi −
1

2

XN

j¼1

½θðk̄i − k̄jÞ þ θðk̄i þ k̄jÞ& þ
θð2k̄iÞ

2
: ð8Þ

The ground-state energy for this setup is given by
EðZÞðNÞ ¼ ðℏ2=2m Þ

PN
i¼1 k̄

2
i . Here the superscript denotes

zero boundary conditions.
The boundary energy is the difference in the ground-state

energy of the system with zero and periodic boundary
conditions,

EBðNÞ ¼ EðZÞðNÞ − EðPÞðNÞ: ð9Þ

For the latter case, one can show that, at the same density,
the energy of the systems with N and 2N particles
are simply related as EðPÞðNÞ ¼ EðPÞð2NÞ=2þ Oð1=NÞ
[22]. In the thermodynamic limit, this yields EB ¼
limN→∞½EðZÞðNÞ − EðPÞð2NÞ=2&, i.e.,

EB ¼ lim
N→∞

ℏ2

2m

XN

i¼1

ðk̄2i − k2i Þ; ð10Þ

where the corresponding quasimomenta are the solutions of
Eqs. (8) and (6).
For the evaluation of the boundary energy (10), we

subtract Eq. (6) from Eq. (8). Since in a long system the
difference k̄i − ki ¼ Δki ¼ Oð1=LÞ is small, we obtain

ΔkiL ¼ π
2
þ θð2k̄iÞ

2
− 1

2

XN

j¼1

½θ0ðki − kjÞðΔki − ΔkjÞ;

× θ0ðki þ kjÞðΔki þ ΔkjÞ& þ Oð1=NÞ: ð11Þ

In a system of length 2L with periodic boundary con-
ditions, we define the density of quasimomenta as
ρðkiÞ ¼ ½2Lðkiþ1 − kiÞ&−1. In the thermodynamic limit, it
satisfies the Lieb integral equation [8,20]

ρðkÞ − c
π

Z
Q

−Q

dk0ρðk0Þ
c2 þ ðk0 − kÞ2

¼ 1

2π
: ð12Þ

Here the Fermi rapidity Q is fixed by the normalization
condition n ¼

R Q
−Q ρðkÞdk. Using the formal expression

ρðkÞ ¼
PN

i¼1½δðk − kiÞ þ δðkþ kiÞ&=2L and the property
ρðkÞ ¼ ρð−kÞ, we then obtain

1þ 1

2L

XN

j¼1

½θ0ðk − kjÞ þ θ0ðkþ kjÞ& ¼ 2πρðkÞ: ð13Þ

The latter equation enables us to simplify Eq. (11).
Introducing an odd function gðkiÞ ¼ LρðkiÞΔki, we obtain
that it satisfies an integral equation

gðkÞ − c
π

Z
Q

−Q

dk0gðk0Þ
c2 þ ðk0 − kÞ2

¼ rðkÞ; ð14aÞ

rðkÞ ¼ sgnðkÞ
4

þ
arctan 2k

c

2π
: ð14bÞ

The boundary energy can then be expressed as

EB ¼ ℏ2

m

Z
Q

−Q
kgðkÞdk: ð15Þ

Equation (14) is our main result. Together with Eq. (15)
they establish the exact result for the boundary energy
of the Lieb-Liniger model at an arbitrary interaction
strength c > 0.
To analyze the boundary energy, let us introduce Green’s

function for the Lieb integral equation as [31]

Gðk; k0Þ − c
π

Z
Q

−Q

dk00Gðk0; k00Þ
c2 þ ðk − k00Þ2

¼ δðk − k0Þ: ð16Þ

One can show by the method of iterations that Green’s
function is symmetric, Gðk; k0Þ ¼ Gðk0; kÞ. Multiplying
Eq. (16) by rðk0Þ [see Eq. (14b)] and performing the
integration over k0, one obtains the integral equation (14a)
provided gðkÞ ¼

R Q
−Q dk0Gðk; k0Þrðk0Þ. The boundary

energy (15) then acquires the form

EB ¼
Z

Q

−Q
dkσðkÞrðkÞ; ð17Þ

where we have defined σðkÞ ¼ ðℏ2=m Þ
R Q
−Q dk0k0Gðk; k0Þ.

From Eq. (16) one finds that σðkÞ satisfies

σðkÞ − c
π

Z
Q

−Q

dk0σðk0Þ
c2 þ ðk − k0Þ2

¼ ℏ2

m
k: ð18Þ

We have therefore reformulated the problem of finding the
boundary energy to be the equivalent, but more convenient,
problem of solving Eq. (18) and then evaluating EB of
Eq. (17).
Additional analytical results can be obtained in the

Gross-Pitaevskii and Tonks-Girardeau regimes of weak
(γ ≪ 1) and strong (γ ≫ 1) interactions, respectively. In the
former case, the integral equation for the density (12) is
solved to first two orders in Refs. [32,33], enabling us to
express Q in terms of γ. However, for the boundary energy,
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The boundary energy is the difference in the ground-state

energy of the system with zero and periodic boundary
conditions,

EBðNÞ ¼ EðZÞðNÞ − EðPÞðNÞ: ð9Þ

For the latter case, one can show that, at the same density,
the energy of the systems with N and 2N particles
are simply related as EðPÞðNÞ ¼ EðPÞð2NÞ=2þ Oð1=NÞ
[22]. In the thermodynamic limit, this yields EB ¼
limN→∞½EðZÞðNÞ − EðPÞð2NÞ=2&, i.e.,

EB ¼ lim
N→∞

ℏ2

2m

XN

i¼1

ðk̄2i − k2i Þ; ð10Þ

where the corresponding quasimomenta are the solutions of
Eqs. (8) and (6).
For the evaluation of the boundary energy (10), we

subtract Eq. (6) from Eq. (8). Since in a long system the
difference k̄i − ki ¼ Δki ¼ Oð1=LÞ is small, we obtain

ΔkiL ¼ π
2
þ θð2k̄iÞ

2
− 1

2
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½θ0ðki − kjÞðΔki − ΔkjÞ;

× θ0ðki þ kjÞðΔki þ ΔkjÞ& þ Oð1=NÞ: ð11Þ

In a system of length 2L with periodic boundary con-
ditions, we define the density of quasimomenta as
ρðkiÞ ¼ ½2Lðkiþ1 − kiÞ&−1. In the thermodynamic limit, it
satisfies the Lieb integral equation [8,20]

ρðkÞ − c
π

Z
Q

−Q

dk0ρðk0Þ
c2 þ ðk0 − kÞ2

¼ 1

2π
: ð12Þ

Here the Fermi rapidity Q is fixed by the normalization
condition n ¼

R Q
−Q ρðkÞdk. Using the formal expression

ρðkÞ ¼
PN

i¼1½δðk − kiÞ þ δðkþ kiÞ&=2L and the property
ρðkÞ ¼ ρð−kÞ, we then obtain
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The latter equation enables us to simplify Eq. (11).
Introducing an odd function gðkiÞ ¼ LρðkiÞΔki, we obtain
that it satisfies an integral equation

gðkÞ − c
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dk0gðk0Þ
c2 þ ðk0 − kÞ2

¼ rðkÞ; ð14aÞ

rðkÞ ¼ sgnðkÞ
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c

2π
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The boundary energy can then be expressed as

EB ¼ ℏ2

m

Z
Q

−Q
kgðkÞdk: ð15Þ

Equation (14) is our main result. Together with Eq. (15)
they establish the exact result for the boundary energy
of the Lieb-Liniger model at an arbitrary interaction
strength c > 0.
To analyze the boundary energy, let us introduce Green’s

function for the Lieb integral equation as [31]

Gðk; k0Þ − c
π

Z
Q

−Q

dk00Gðk0; k00Þ
c2 þ ðk − k00Þ2

¼ δðk − k0Þ: ð16Þ

One can show by the method of iterations that Green’s
function is symmetric, Gðk; k0Þ ¼ Gðk0; kÞ. Multiplying
Eq. (16) by rðk0Þ [see Eq. (14b)] and performing the
integration over k0, one obtains the integral equation (14a)
provided gðkÞ ¼

R Q
−Q dk0Gðk; k0Þrðk0Þ. The boundary

energy (15) then acquires the form
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Z
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where we have defined σðkÞ ¼ ðℏ2=m Þ
R Q
−Q dk0k0Gðk; k0Þ.

From Eq. (16) one finds that σðkÞ satisfies

σðkÞ − c
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Z
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−Q

dk0σðk0Þ
c2 þ ðk − k0Þ2

¼ ℏ2

m
k: ð18Þ

We have therefore reformulated the problem of finding the
boundary energy to be the equivalent, but more convenient,
problem of solving Eq. (18) and then evaluating EB of
Eq. (17).
Additional analytical results can be obtained in the

Gross-Pitaevskii and Tonks-Girardeau regimes of weak
(γ ≪ 1) and strong (γ ≫ 1) interactions, respectively. In the
former case, the integral equation for the density (12) is
solved to first two orders in Refs. [32,33], enabling us to
express Q in terms of γ. However, for the boundary energy,
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boundary energy to be the equivalent, but more convenient,
problem of solving Eq. (18) and then evaluating EB of
Eq. (17).
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dimensionless 
parameter

we have to solve Eq. (18) within the same accuracy (see
Supplemental Material [34]). Using Eq. (17) we then find

EB ¼ 8

3
ϵ

ffiffiffi
γ

p
"
1 −

3

16

ffiffiffi
γ

p þ OðγÞ
#
; ð19Þ

which agrees at the leading order with the result (2). In the
opposite regime of strong interaction, the integral equa-
tions (12) and (18) can be perturbatively solved by
iterations to an arbitrary order in 1=γ [35]. It yields [34]

EB ¼ π2

2
ϵ

"
1 −

4

3γ
−

4

3γ2
þ 4ð120þ 7π2Þ

15γ3
þ Oðγ−4Þ

#
:

ð20Þ

In Fig. 1 we show the two asymptotic expressions and the
exact data obtained by numerically evaluating Eq. (15) or,
equivalently, Eq. (17).
In Ref. [22], Gaudin found the integral equation of the

form (14a) but with a different right-hand side, which
instead was given by rGðkÞ ¼ sgnðkÞ=2. Such expression is
approximately the correct right-hand side of Eq. (14a) only
at c → 0, as one can see by considering Eq. (14b) in this
limit. Thus, Gaudin was able only to find the leading order
expression (2) for the boundary energy at weak interaction.
We notice that Gaudin’s result for rGðkÞ leads to a
significant overestimation of the boundary energy, see
Fig. 1. Interestingly, using Eq. (17) Gaudin’s formula for
the boundary energy becomes EB;G ¼

RQ
0 dkσðkÞ. Such

expression formally coincides with the energy of Lieb’s
type-II excitation in the (periodic) Lieb-Liniger model with
the momentum πℏn [20,36,37]. The asymptotic form of

EB;G in the two regimes is given by (see Supplemental
Material [34])

EB;G ¼ ϵ

(
8
3

ffiffiffi
γ

p ½1 − 0
ffiffiffi
γ

p þ OðγÞ&;
π2½1 − 4

γ þ
12
γ2 þ

4ðπ2−8Þ
γ3 þ Oðγ−4Þ&: ð21Þ

At weak interaction, EB;G of Eq. (21) and EB of Eq. (19)
differ at the subleading OðγÞ order. In other words, already
in the first beyond mean-field correction to the energy, there
is a difference between the dark soliton and the boundary
energy. At large γ, EB;G is twice EB (see Fig. 1).
Additional physical insights for the boundary energy can

be obtained by using more elementary approaches than the
Bethe ansatz. The weakly interacting case γ ≪ 1 can be
studied using the Gross-Pitaevskii equation and the quan-
tum corrections to it. Such procedure indeed recovers the
boundary energy (19) [38]. In the opposite regime of strong
interaction between bosons γ ≫ 1, one can study the
model (4) using the perturbation theory on the related dual
Cheon-Shigehara model of fermions of the same mass m,
which interact via the attractive potential VFðxÞ ¼
−ð2ℏ2=mcÞδ00ðxÞ [30,39–41]. In the noninteracting limit
of fermions [29] in a box one obtains the boundary energy
π2ϵ=2, while the linear correction in VF reproduces the
first correction ∝1=γ of Eq. (20) (see Supplemental
Material [34]).
We also calculated the boundary energy using the

diffusion Monte Carlo method. In this approach one
approximates the many-body wave function by the product
ψðx1;x2;…;xNÞ¼

QN
i¼1f1ðxiÞ

QN
i<jf2ðxi−xjÞ. The one-

body term is chosen as f1ðxÞ ¼ sinαðπx=LÞ and it imposes
the zero boundary conditions. The remaining two-body
Jastrow terms are constructed [42–46] at short dista-
nces from the two-body scattering solution, f2ðxÞ ¼
C1 cosðkðjxj − C2ÞÞ, jxj < C3, which satisfies the Bethe-
Peierls boundary condition and from the phononic tail at
larger distances [47], f2ðxÞ ¼ sin1=Kðπjxj=LÞ, jxj > C3,
where K is the Luttinger liquid parameter. The free
parameter α is fixed by minimizing the variational energy,
K is taken from the Bethe ansatz solution [8], while the
constants C1, C2, and C3 are fixed by the boundary and the
continuity conditions.
The diffusion Monte Carlo method is used to obtain the

boundary energy at several values of γ for N ¼ 21 and
N ¼ 41 particles. Both sets of results are in agreement with
the boundary energy obtained by numerically solving the
discrete Bethe ansatz equations. The boundary energy for
N ¼ 21 particles is always slightly larger than the one for
N ¼ 41, which approaches the exact value of EB in the
thermodynamic limit, see Fig. 1. The results for N ¼ 21 are
not shown because they would be hardly distinguishable
from the ones of N ¼ 41 on the resolution of Fig. 1.
In the limit of low density, specific details of short-range

potentials become irrelevant and a single parameter,
namely, the s-wave scattering length a, is sufficient to

FIG. 1. The boundary energy EB in units of ϵ as a function of
the interaction strength γ. The lower (black) dots represent the
exact numerically obtained results using Eqs. (17) and (18) while
the two asymptotic behaviors at small and large γ are given by
formulas (19) and (20). The upper (brown) dots represent the
result of Gaudin [22] and coincides with the energy of Lieb’s
type-II excitation with zero velocity (momentum πℏn) in the
model with periodic boundary conditions. The (green) squares
represent the boundary energy obtained from the Monte Carlo
method for N ¼ 41 particles, which approach the exact curve
with increasing N.
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equivalently, Eq. (17).
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instead was given by rGðkÞ ¼ sgnðkÞ=2. Such expression is
approximately the correct right-hand side of Eq. (14a) only
at c → 0, as one can see by considering Eq. (14b) in this
limit. Thus, Gaudin was able only to find the leading order
expression (2) for the boundary energy at weak interaction.
We notice that Gaudin’s result for rGðkÞ leads to a
significant overestimation of the boundary energy, see
Fig. 1. Interestingly, using Eq. (17) Gaudin’s formula for
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At weak interaction, EB;G of Eq. (21) and EB of Eq. (19)
differ at the subleading OðγÞ order. In other words, already
in the first beyond mean-field correction to the energy, there
is a difference between the dark soliton and the boundary
energy. At large γ, EB;G is twice EB (see Fig. 1).
Additional physical insights for the boundary energy can

be obtained by using more elementary approaches than the
Bethe ansatz. The weakly interacting case γ ≪ 1 can be
studied using the Gross-Pitaevskii equation and the quan-
tum corrections to it. Such procedure indeed recovers the
boundary energy (19) [38]. In the opposite regime of strong
interaction between bosons γ ≫ 1, one can study the
model (4) using the perturbation theory on the related dual
Cheon-Shigehara model of fermions of the same mass m,
which interact via the attractive potential VFðxÞ ¼
−ð2ℏ2=mcÞδ00ðxÞ [30,39–41]. In the noninteracting limit
of fermions [29] in a box one obtains the boundary energy
π2ϵ=2, while the linear correction in VF reproduces the
first correction ∝1=γ of Eq. (20) (see Supplemental
Material [34]).
We also calculated the boundary energy using the

diffusion Monte Carlo method. In this approach one
approximates the many-body wave function by the product
ψðx1;x2;…;xNÞ¼

QN
i¼1f1ðxiÞ

QN
i<jf2ðxi−xjÞ. The one-

body term is chosen as f1ðxÞ ¼ sinαðπx=LÞ and it imposes
the zero boundary conditions. The remaining two-body
Jastrow terms are constructed [42–46] at short dista-
nces from the two-body scattering solution, f2ðxÞ ¼
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K is taken from the Bethe ansatz solution [8], while the
constants C1, C2, and C3 are fixed by the boundary and the
continuity conditions.
The diffusion Monte Carlo method is used to obtain the

boundary energy at several values of γ for N ¼ 21 and
N ¼ 41 particles. Both sets of results are in agreement with
the boundary energy obtained by numerically solving the
discrete Bethe ansatz equations. The boundary energy for
N ¼ 21 particles is always slightly larger than the one for
N ¼ 41, which approaches the exact value of EB in the
thermodynamic limit, see Fig. 1. The results for N ¼ 21 are
not shown because they would be hardly distinguishable
from the ones of N ¼ 41 on the resolution of Fig. 1.
In the limit of low density, specific details of short-range

potentials become irrelevant and a single parameter,
namely, the s-wave scattering length a, is sufficient to

FIG. 1. The boundary energy EB in units of ϵ as a function of
the interaction strength γ. The lower (black) dots represent the
exact numerically obtained results using Eqs. (17) and (18) while
the two asymptotic behaviors at small and large γ are given by
formulas (19) and (20). The upper (brown) dots represent the
result of Gaudin [22] and coincides with the energy of Lieb’s
type-II excitation with zero velocity (momentum πℏn) in the
model with periodic boundary conditions. The (green) squares
represent the boundary energy obtained from the Monte Carlo
method for N ¼ 41 particles, which approach the exact curve
with increasing N.
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