

Hanbury-Brown and Twiss bunching of phonons and of the quantum depletion in a strongly-interacting Bose gas

PARIS-SACLAY

Hugo Cayla¹, Salvatore Butera², Cécile Carcy¹, Antoine Ténart¹, Gaétan Hercé¹, Marco Mancini¹, Alain Aspect¹, **lacopo Carusotto³, and David Clément¹**

¹Laboratoire Charles Fabry – Palaiseau (France), ²School of Physics and astronomy – Glasgow (UK), ³Center and Dipartimento di Fisica – Trento (Italy)

Measuring 3D (far-field) momentum distributions of individual atoms

Bose-Einstein condensates of metastable Helium atoms ⁴He^{*}

ParisTech

3D optical lattice (λ =1550 nm)

He^{*} detector (micro-channel plates and delay lines):

MCP

Single-atom-resolved 3D distribution in far-field

- Detection in far-field regime of expansion [1]: $t_{\rm tof} \simeq 300 \text{ ms} > t_{\rm FF} = \frac{mL^2}{2\hbar} \simeq 60 \text{ ms}$
- Ballistic expansion:
 - mean-field effect negligible ($\hbar\omega_{
 m site}\gg\mu$)

- Reconstruction of **3D positions** of individual atoms
- Large dynamic range in densities (no background)
- **Excellent resolution** 3.
- **Saturation** at high flux 4.

- two-body collisions negligible A. Tenart et al., Phys. Rev. Research 2, 013017 (2020)

Benchmarking the experiment with ab-initio Quantum Monte-Carlo (QMC)

Excellent match between measured TOF densities and QMC calculations of the in-trap momentum distributions by G. Carleo (Flatiron Institute) [2,3]

Second order correlation function in the depletion

Goal: Measure two-particles HBT like correlations with interacting particles.

Measuring 3D atom distributions allows us to <u>separate the contribution</u> of the condensate from that of the depletion (thermal+quantum):

 $g_{\Omega_{\mathbf{k}}}^{(2)}(\delta \mathbf{k}) = \frac{\int_{\Omega_{\mathbf{k}}} \langle a^{\dagger}(\mathbf{k}) a^{\dagger}(\mathbf{k} + \delta \mathbf{k}) a(\mathbf{k}) a(\mathbf{k} + \delta \mathbf{k}) \rangle \, \mathrm{d}\mathbf{k}}{\int_{\Omega_{\mathbf{k}}} \langle n(\mathbf{k}) \rangle \langle n(\mathbf{k} + \delta \mathbf{k}) \rangle \, \mathrm{d}\mathbf{k}}$

Volume over which we compute the correlation function

Amplitude and width of the correlation peak

Analysis of the amplitude

Bogoliubov transformation:

Interacting Bose gas = many-body ground state + non-interacting quasi-particles excitations of phononic nature at low k.

Non-interacting quasi-particles: Population set by temperature \rightarrow **Thermal Depletion** ightarrow Same as the ideal Bose gas ightarrow Gaussian/Chaotic statistics $ightarrow q^{(2)}(0)=2$

Many-body ground state : BEC + Quantum Depletion

 \rightarrow Pair-correlated atoms with opposite momenta \rightarrow Pure quantum state (analogy with

New results: k/-k correlations in the quantum depletion

Quantum depletion = pairs of opposite momenta

two-mode squeezed vacuum) \rightarrow No bunching?

IN FACT: we measure local correlations between atoms belonging to two different pairs. → The density matrix is obtained by tracing over the second partner which is ignored \rightarrow Chaotic character \rightarrow Bunching! $\rightarrow g^{(2)}(0) = 2$

Both thermal and quantum depletion show perfect bosonic bunching \rightarrow no effect of temperature on the amplitude.

Analysis of the width

0.2

1.5

1.0

0.0

0.4

0.6

 $k_B T/\mu$

1.4 1.2 $^{(2)}(0)$ 0.8 0.6 0.2 0.0 0.4 0.6 1.0 0.8 $k_B T/\mu$

 $T_{\rm BEC}$

T=0 \rightarrow only quantum depletion whose spatial size is limited to the BEC

 \rightarrow Peak width is the inverse of the BEC width

At low temperature, low-lying phononic excitations appear, spatial size is very close to the BEC size \rightarrow Peak width close to T=0 width AND signficantly different from the ideal case.

When T increases, Bogoliubov excitations 1.0 progressively extends out of the condensate \rightarrow Spatial size increases \rightarrow Peak width diminishes

In general, the correlation peak width is smaller than that of ideal bosons in the same trap at same temperature, as the in-trap size is broadened by interactions \rightarrow Stronger difference at low temperature where interactions play a prominent role.

нŌч

0.8

Work recently published, H. Cayla et al., *Phys. Rev. Letters*, 125(16), 165301.

Bibliography

1. F. Gerbier et al. Phys. Rev. Lett. 101, 155303 (2008).

2. Y. Kato et al. Nature Physics 4, 617 - 621 (2008) ; R. Ushnish & D.M. Ceperley, Phys. Rev. A 87, 051603 (2013).

3. S. Trotzky et al. Nat Phys 6, 998–1004 (2010).

