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Measuring 3D (far-field) momentum distributions of individual atoms

Bose-Einstein condensates (BECs)

. ALy \ 12
of metastable Helium atoms “He .. {_ * Detection in far-field regime of expansion [1]:
3D optical lattice (A=1550 nm) | m L? )
) | - , \ g tior >~ 300 ms > tpp = o7 ~ 60 ms
He detector (micro-channel plates Q/ , S . Ballistic expansion:
and delay lines): 5| - | | o : @
| - ' - mean-field effect negligible (hwgite > 1) bdhy, T W
1. Reconstruction of 3D positions . " - two-body collisions negligible A. Tenart et al., Phys. Rev. Research 2, 013017 (2020)
of individual atoms ', A
2. Large dynamic range in i : "
densities (no background) s ;

Excellent match between measured TOF densities and QMC calculations of £ .
the in-trap momentum distributions by G. Carleo (Flatiron Institute) [2,3] N

n(k,0,0) [count

3. Excellent resolution
4. Saturation at high flux
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H. Cayla et al., Phys. Rev. A 97, 061609(R) (2018) ‘=

Bose-Hubbard Hamiltonian Exploring the Bose-Hubbard phase diagram

Bosons in optical lattices emulate the Bose-Hubbard Hamiltonian :
- - ODT intensity

[/ Lattice intensity
H = —JZ (bgbj + h.c.) + Z gn@-(ni — 1) + Vin, Linear increase (0.3 Er/s) of the lattice - 3D imaging
(25 Lo ] intensity = exponential increase of u. ,____He’ detector
Known to exhibit a many-body quantum phase transition at T = 0 s | gl
driven by the parameter u = U /J [4]. Critical point of the transition | | Reaching u’ > w is identical to start from the /7 e
at uMF ~ 29.34 [5]. equilibrium at u and then further increase ,, i
the lattice intensity to reach u'. J_{_
Context : quantum simulators and adiabatic preparation. time

= Can strongly correlated states be prepared close to many-body

h L Working with clouds of 3.0(5) x 103 atoms allows to compare the measured k-
quantum phase transition :

space densities with exact QMC calculations.

 Simulations using our experimental 1.0] &= 30] — fexp (k)
Entropy map of the trapped (3D) parameters, with fixed atom number os- = — el T =22
N = 3000. 0.6 - T AaMeR s T
- - =0 NI k.’.rﬂr;: 3
Bose-Hubbard model * Temperature set as the only adjustable ,,] al ki ksl
parameter. 0o
SINkg | ‘_ \
I3.6 = Best agreement gives the temperature. 005 fiﬂd] 0.5
3.2
5 g 0.08
2'4 % - 22J Superfluid regime : T follows the exponential
' 0.06 I} decrease of | as u = U/] is increased, this being
2.0 _ \ .
6 5 % due to the narrowing of the Bloch band.
' ~0.04
12 he g1l T -
0.8 (Y ‘.T’ + Mott regime : no decrease of the temperature
' 0.02] %\é " .
I0_4 o ecause opening of the gap.
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The precision of our temperature measurement is inherently bounded by the
Within error bars, almost all temperatures are compatible with the Cramer-Rao limit [6] : ky T 1
i ' oly = < (0Ty) . =
isentropic range S/Nkg = 0.8(1). Moreover, the entropy of the J min - JT(T)M
initial BEC was measured to be 5o /Nkp = 0.72(7). with M the sample size of the k-space densities and I(T) the Fisher
information [6] related to the temperature. 7 ’@101
= Both the loading and the ramping up of the lattice conserve the ] |
entropy of the initial BEC. Qualitatively : good concordance between
variations of I(T) and experimental error bars. 5
= Ensure the adiabatic preparation of any finite-entropy state of ~4

Quantitatively : at u = 30, 0T, = 0.03 while

the 3D Bose-Hubbard model.
(6T;). . =0.03.

= This property hol ven in the vicini f many-
S_property c.).ds e. s the vic .t.y of a _many-body = Highest precision close to the transition. 10 20 30 40 50 60
quantum phase transition like the Mott transition. u=UlJ
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